
Almost-Optimally Fair Multiparty Coin-Tossing
with Nearly Three-Quarters Malicious∗

Bar Alon and Eran Omri

Department of Computer Science, Ariel University
alonbar08@gmail.com, omrier@ariel.ac.il

Abstract. An α-fair coin-tossing protocol allows a set of mutually dis-
trustful parties to generate a uniform bit, such that no efficient adver-
sary can bias the output bit by more than α. Cleve [STOC 1986] has
shown that if half of the parties can be corrupted, then, no r-round
coin-tossing protocol is o(1/r)-fair. For over two decades the best known
m-party protocols, tolerating up to t ≥ m/2 corrupted parties, were
only O

(
t/

√
r
)
-fair. In a surprising result, Moran, Naor, and Segev [TCC

2009] constructed an r-round two-party O(1/r)-fair coin-tossing proto-
col, i.e., an optimally fair protocol. Beimel, Omri, and Orlov [Crypto
2010] extended the result of Moran et al. to the multiparty setting where
strictly fewer than 2/3 of the parties are corrupted. They constructed a
22k

/r-fair r-round m-party protocol, tolerating up to t = m+k
2 corrupted

parties.
Recently, in a breakthrough result, Haitner and Tsfadia [STOC 2014]
constructed an O

(
log3(r)/r

)
-fair (almost optimal) three-party coin-

tossing protocol. Their work brought forth a combination of novel tech-
niques for coping with the difficulties of constructing fair coin-tossing
protocols. Still, the best coin-tossing protocols for the case where more
than 2/3 of the parties may be corrupted (and even when t = 2m/3,
where m > 3) were θ

(
1/

√
r
)
-fair. We construct an O

(
log3(r)/r

)
-fair m-

party coin-tossing protocol, tolerating up to t corrupted parties, when-
ever m is constant and t < 3m/4.

1 Introduction

Secure multiparty computation allows a set of mutually distrustful parties to per-
form a computational task, while guaranteeing some security properties to hold.
Examples of desirable security properties of a secure protocol are correctness,
privacy, and fairness (roughly, the requirement that either all parties receive
their respective outputs, or none do). When a strict majority of honest parties
can be guaranteed, protocols for secure computation (see, e.g., [19, 9]) provide
full security, i.e., they provide all the security properties mentioned above (and
others), including fairness. When there is no honest majority, however, this is no
longer the case, and full security (specifically, full fairness) is not achievable in

∗A preliminary version of this paper appeared in [1]. Research supported by ISF
grant 544/13.

general. As was shown by Cleve [14], this is already evident for the elementary
(no input) task of coin-tossing.

The coin-tossing functionality, introduced by Blum [12], allows a set of par-
ties to agree on a uniformly chosen bit. Cleve [14] showed that this functionality
cannot be computed with complete fairness without a strict honest majority. He
proved that for any r-round two-party coin-tossing protocol, there exists an (effi-
cient) adversary that can bias the output of the honest party by Ω(1/r). Cleve’s
impossibility naturally generalizes to the multiparty setting with no honest ma-
jority and has ramifications to general secure computation, implying that any
function that implies coin-tossing (e.g., the XOR function) cannot be computed
with full fairness without an honest majority. The question of optimal fairness
for the coin-tossing functionality seems to be crucial towards understanding
general secure and fair multiparty computation.

On the positive end, Averbuch et al. [6], Cleve [14] showed how to compute
the coin-tossing functionality with partial fairness, limiting the bias of any adver-
sary to O (1/

√
r). For over two decades, these constructions were believed to be

optimal. This belief was supported by the work of Cleve and Impagliazzo [15],
showing that in a model, where commitments are available only as black-box
(and no other assumptions are made), the bias of any coin-tossing protocol is
Ω(1/

√
r). In a breakthrough result, Moran, Naor, and Segev [31] showed that the

Ω(1/r)-bias lowerbound of Cleve is tight for the case of two-party coin-tossing.
They constructed an r-round two-party coin-tossing protocol with bias O(1/r).
The protocol of Moran et al. follows the special-round paradigm1, previously
appearing in [28, 23].

Beimel, Omri, and Orlov [8] constructed (via the special-round paradigm)
an optimal O(1/r)-bias protocol for any constant number of parties, whenever
strictly less than a 2/3-fraction of the parties are malicious. More accurately,
for their construction to yield an O(1/r) bound on the bias of their protocol, it
suffices that the gap between the number of corrupted parties and the number
of honest parties is constant (rather than the total number of parties).

Still, the question whether optimal O(1/r)-coin-tossing was possible when the
set of malicious parties may consist of two-thirds or more of the parties remained
open. Specifically, even the case of three-party optimally-fair coin-tossing, where
two of the parties may be corrupted remained unsettled. Answering the question
regarding the three party case seemed to require new techniques and a novel
understanding of coin-tossing protocols. In another breakthrough result, Haitner
and Tsfadia [25] constructed an O

(
log3(r)/r

)
-fair (almost optimal) three-party

coin-tossing protocol. Their work, indeed, offers some profound insight into the
difficulties of constructing coin-tossing protocols, and brings forth a combination
of novel techniques for coping with these difficulties. However, while it may be
tempting to expect that the solution for the three-party case (and, specifically,
that of [25]) will soon lead to a solution for fair coin-tossing for any (constant)
number of parties, this has not been the case so far.

1The idea is to randomly and secretly choose a special round in which the parties
unknowingly get the output of the computation.

2

1.1 Our results

Our main contribution is a multiparty coin-tossing protocol that has small bias
whenever the number of parties is constant fewer than 3/4 of them are corrupted.

Theorem 1 (informal). Assume that oblivious transfer protocols exist. Let m
and t be constants (in the security parameter n) such that m/2 ≤ t < 3m/4, and
let r = r(n) be an integer. There exists an r-round m-party coin-tossing protocol
tolerating up to t corrupted parties that has bias O(22m log3(r)/r).

The formal statements and proofs implying Theorem 1 are given in Section 3,
a warmup construction illustrating the ideas behind the general construction
is given in Section 1.4. The 22m factor in the upperbound on the bias of our
construction is due the fact that in each round, the adversary sees defense values
for many corrupted subsets. For this reason, we require m to be constant.

1.2 Additional Related Work

Partially fair coin-tossing is an example of 1/p-secure computation. Informally,
a protocol is 1/p-secure if it emulates the ideal functionality within 1/p distance.
The formal definition of 1/p-secure computation appears in Section 2.3.1. 1/p-
security with abort was suggested by Katz [28]. Gordon and Katz [22] defined
1/p-security and constructed 2-party 1/p-secure protocols for every functionality
whose size of either the domain or the range of the functionality is polynomial (in
the security parameter). Beimel et al. [7] studied multiparty 1/p-secure protocols
for general functionalities. The main result in [7] is constructions of 1/p-secure
protocols that are resilient against any number of corrupted parties, provided
that the number of parties is constant and that the size of the range of the
functionality is at most polynomial in the security parameter n. The bias of the
coin-tossing protocol resulting from [7] is O(1/

√
r).

The impossibility result of Cleve [14] made many researchers believe that
no interesting functions can be computed with full fairness without an hon-
est majority. A surprising result by Gordon et al. [23] showed that there are
even functions containing embedded XOR that can be computed with fairness.
This led to a line of works, investigating complete fairness in secure multiparty
computation without an honest majority [3, 2, 30]. Recently, Asharov et al. [4]
gave a full characterization of fairness secure two-party computation of Boolean
functions.

Coin-tossing is an interesting and useful task even in weaker models, e.g.,
secure-with-abort coin-tossing – where honest parties are not requested to output
a bit upon a premature abort by the adversary, and weak coin-tossing – where
each party has an a priori desire for the output bit. Indeed, the latter type
of coin-tossing was the one formulated by Blum [11], who suggested a fully
secure weak (and actually, secure with abort) coin-tossing protocol based on
the existence of one-way functions ([26, 32]). His protocol is also a 1/4-secure
implementation of the fair coin-tossing functionality. Conversely, the existence of

3

secure-with-abort protocols imply the existence of one-way functions [29, 24, 10].
For the cryptographic complexity of optimally-fair coin-tossing, [16, 17] gave
some evidence that one-way functions may not suffice.

1.3 Our Techniques

Towards explaining the ideas behind our protocol, we give a brief overview of
the constructions of [31, 8, 25]. We restrict our discussion to the fail-stop model,
where corrupted parties follow the prescribed protocol, unless choosing to pre-
maturely abort at some point in the execution. Indeed, the core difficulties in
constructing fair coin-tossing protocols stand in this model as well. Specifically,
an r-round multiparty coin-tossing protocol in the fail-stop model can be adapted
to the malicious setting by adding signatures to each message (or by applying
the GMW compiler [19]).

1.3.1 The Protocol of Moran et al. [31]. The protocol of Moran, Naor,
and Segev [31] is a two-party r-round coin-tossing protocol with optimal bias
1/4r. That is, their protocol matches the lowerbound of Cleve [14] (up to a
factor 2). The basic idea of the protocol is that in each round i, each of the
parties is given an independently chosen uniform bit, which will be its output,
in case the other party aborts. This is done until some special round i∗. From
round i∗ and on, both parties get the same bit c. Finally, i∗ is chosen uniformly
from [r] and is kept secret from the parties. The security of the protocol relies
on the inability of the adversary to guess the value of i∗ with probability higher
than 1/r. We next give a slightly more detailed overview of the MNS protocol
restricted to fail-stop adversaries.

A skeleton for two-party coin-tossing protocols. We start by describing the skele-
ton for the two-party protocol of [31]. Indeed, this is a more generic skeleton and
can be used to describe any two-party coin-tossing protocol (A, B).

The preliminary phase of the protocol. In this phase, the parties jointly compute
defense values for each of the r rounds of interaction. Denote the defense value
assigned to A for round i ∈ [r] by ai and the value assigned to B for round i by
bi (in the MNS protocol, these defense values are actually bits). At the end of
this preliminary phase, the parties do not learn these defense values, but rather
hold a share in a 2-out-of-2 secret sharing scheme (separately, for each defense
value). Denote by ai[P] and bi[P] the shares of ai and bi (respectively) held by
party P.

Interaction rounds. In round i, party A reveals bi[A] and party B reveals ai[B].
Specifically, in round i, party A learns ai and party B learns bi. The role of these
defense values is to define the output of an honest party, upon a premature abort
of the other party. For example, if party A aborts in round i (not allowing B to
learn bi), then B halts and outputs bi−1. If an abort never occurs, then parties
output ar = br.

4

The MNS instantiation of the two-party skeleton. We now specify how the de-
fense values are selected in the protocol of [31]. The parties jointly select a
special round number i∗ ∈ {1, . . . , r}, uniformly at random, and select bits
a1, . . . , ai∗−1, b1, . . . , bi∗−1, independently, uniformly at random. Then, they uni-
formly select a bit w ∈ {0, 1} and set ai = bi = w for all i∗ ≤ i ≤ r.

The security of the protocol follows from the fact that, unless the adversary
aborts in round i∗, it cannot bias the output of the protocol. This is true, since
before round i∗ the view of the adversary is independent of the prescribed output
bit w, and hence, given that the adversary aborts before round i∗, the output of
the honest party is a uniform bit. On the other hand, after round i∗ is completed,
the output of the honest party is fixed. Hence, aborting in any round after i∗

is equivalent to never aborting at all, therefore, given that the adversary aborts
after round i∗, the output of the honest party is also a uniform bit. Finally, the
view of any of the parties up to round i ≤ i∗ is independent of the value of i∗,
hence, any adversary corrupting a single party can guess i∗ with probability at
most 1/r.

1.3.2 The Protocols of Haitner and Tsfadia [25]. Haitner and Tsfadia
[25] constructed a three-party r-round coin-tossing protocol with close to optimal
bias O

(
log3 r/r

)
. Towards achieving this goal, Haitner and Tsfadia [25] first con-

structed several new two-party fair coin-tossing protocols with bias O
(
log3 r/r

)
.

Evidently, the bias of these protocols does not match the Cleve [14] lowerbound
(as does the MNS protocol), however, the techniques and insight introduced
in these constructions make them interesting even before considering the final
three-party construction, for which they serve as a building block. In fact, most of
the techniques that enable the three-party construction of [25] come up already
in their two-party protocols.

Before describing the protocols of [25], let us first highlight some of the
ideas underlying them. We stress that none of their protocols follows the special
round paradigm. Alternatively, their protocols have the value of the game (i.e.,
the expected outcome in an honest continuation of the current state) gradually
shift from being 1/2 (or some other α ∈ [0, 1], for that matter) to being either
0 or 1. This is done by having the parties run in the background – jointly and
hidden from each of them – a protocol with a gradually shifting and publicly
known game value (in this case, a weighted variant of the majority protocol of
[6, 14]). Let Oi be the game value in round i.

One of the core observations underlying all the constructions of Haitner and
Tsfadia [25] is that letting the defense value ai be a bit sampled according to Oi,
fully protects A in case of an abort by B in round i. More importantly, if the gap
between Oi and Oi−1 is typically O (1/

√
r), then ai does not reveal too much

information about the current value of Oi to A. Finally, Haitner and Tsfadia [25]
show that ai can be instantiated, not only as a bit, but also as a description of a
full execution of a two-party protocol with output and (defense values) sampled
according to Oi (where, this form of ai still does not reveal too much information

5

about the current value of Oi to A). Going from here to their construction of a
three-party coin-tossing protocol is fairly natural.

We next describe the two-party protocols of Haitner and Tsfadia [25]. We do
so using the skeleton for two-party protocols described in Section 1.3.1. That
is, we explain how the defense values ai, bi for each round i are selected. We
note that Haitner and Tsfadia [25] did not present their protocols in this exact
manner, but rather divided each interaction round i into two steps. The first step
is exactly the one described in the above skeleton, i.e., where A learns ai and B
learns bi. In the second step of round i, the parties reconstruct a value xi that
describes the expected value of the game Oi. This extra step is not necessary
for the correctness of the protocol, and hence, does not affect the security of the
protocol (since any attack on the protocol not using xi can also be applied to
the protocol that gives xi).

The basic two-party protocol of [25]. We now specify how the defense values
are selected in the basic two-party protocol of [25] (parametrized by α ∈ [0, 1]),
such that the common output bit is 1 with probability α. The basic idea is to
sample O(r2) bits (i.e., elements from {−1, 1}) i.i.d., such that the sum of all
bits is positive with probability α. The prescribed output of the protocol is 1 if
the sum of all bits is positive, and 0 otherwise. Towards revealing this output
(gradually, in r rounds), let δi be the value of the game, conditioned on the
value of the first

∑r
k=r−i+1 k bits. Note that δ0 = α and that in each round i,

the value of δi is computed conditioned on less and less new bits (i.e., bits that
were not used to compute δi−1). The defense value given to each of the parties
in round i is simply a sample from δi.

Slightly more formally, let ε ∈
[
−1

2 , 1
2
]

be such that the sum of r(r + 1)/2
elements from {−1, 1} is positive with probability α, where each element is 1
with probability 1/2 + ε. Let xi be the sum of r − i + 1 elements from {−1, 1},
where each element takes the value of 1 with probability 1/2 + ε. Let δi be
the expected game value in round i, that is, δi is the probability that the sum
of
∑r−i

k=1 k elements from {−1, 1}, is at least
∑i

k=1 xk. The bits ai and bi are
independently sampled according to δi, i.e., ai = 1 (and bi = 1) w.p. δi.

For some intuition on the security of the protocol, consider the case where
party A, wishing to bias the output of party B, receives a defense value ai before
party B receives its defense value bi. If A chooses to abort, then B is instructed
to output ai−1, which was sampled according to δi−1. Indeed, if A could see
δi before deciding whether to abort or not, it could bias the output of B by
Ω(1/

√
r). The crux of the analysis is to show that this is not the case when

A only receives a sample from δi. Towards this end, Haitner and Tsfadia [25]
bound, on expectation, the gap between δi−1 and δ̂i−1, defined to be the value
of the game, conditioned on the value of the first

∑r
k=r−i+1 k bits and on the

value of ai.

The three party protocol of [25]. The construction of [25] for three parties follows
a very similar rationale to the above protocol. That is, in each round i every
single party, as well as, every pair of parties obtain a defense value that should

6

behave as a sample from δi. A pair of parties cannot simply be given a single
bit, since one of them may be corrupt. Rather, they should be given a two-party
protocol similar to the above, with their defenses set with parameter α = δi. A
problem arises here, since the simple application of the above idea would require
giving the adversary information based on Ω(r3) bits sampled according to the
appropriate ε value. This would be devastating to the security of the protocol,
as it would allow the adversary to reveal δi. To tackle this problem, [25] came up
with a derandomized version of the above two-party protocol. They were then
able to show that sending the shares for this protocol as the defense values for
pairs of parties does not reveal too much about δi to the adversary. We next
describe the derandomized two-party protocol of Haitner and Tsfadia [25].

The two-party derandomized protocol of [25]. We now specify how the defense
values are selected in the derandomized version of the protocol of [25], such that
the common output bit is 1 with probability α. Let ε ∈

[
−1

2 , 1
2
]

be such that the
sum of r(r + 1)/2 elements from {−1, 1} is positive with probability α, where
each element is 1 with probability 1/2 + ε. For j ∈ {a, b}, let Sj be a set of size
r(r + 1), over {−1, 1}, where each element takes the value of 1 with probability
1/2+ε. Let xi be the sum of r− i+1 elements from {−1, 1}, where each element
takes the value of 1 with probability 1/2 + ε. Let δj

i be the expected game value
in round i, according to the set Sj , that is, δj

i is the probability that the sum
of the elements in a randomly chosen subset of Sj , of size

∑r−i
k=1 k, is at least∑i

k=1 xk. The bit ai (respectively bi) is sampled according to δa
i (respectively

δb
i), i.e., ai = 1 (respectively bi = 1) with probability δa

i (respectively δb
i).

The security of the various constructions of [25] is proved via a series of
bounds on weighted Binomial games. In Section 2, we recall these results, and
in Section 3 we use them to prove the security of our construction.

1.3.3 Reducing Many-Party Coin-Tossing to Few-Party Coin-Tossing
Reducing multiparty coin-tossing protocols for the setting without an honest
majority to 2-party protocols is quite straightforward. Indeed, the impossibility
of Cleve [14] is generalized from the two-party setting to the many party setting
via such a reduction. In this section, we show that sometimes the other direction
is also possible.

The Protocol of Beimel et al. [8]. The protocol of Beimel, Omri, and Orlov
[8] extends the results of [31] to the multiparty model, where fewer than 2/3
of the parties are corrupted. The bias of their protocol is proportional to 1/r
and doubly exponential in the gap between the number of corrupted parties t
and the number of honest parties h in the protocol (m = h + t). In particular,
for a constant number of parties m, where fewer than 2m/3 are corrupted, [8]
present an r-round m-party coin-tossing protocol with an optimal bias of O(1/r).
Interestingly, their protocol has an O(1/r)-bias even when the number of parties
m is non-constant, as long as the t− h is constant. In the following description,

7

however, we present a simplified version of the protocol of [8], which requires t
(rather than t− h) to be constant in order to achieve an O(1/r)-bias.

While not presented this way, the result of Beimel et al. [8] is achieved via
a generic reduction to (a certain type of) two-party protocols. They use a few
layers of secret sharing schemes to allow for each subset J of parties, containing
an honest majority (i.e., h ≤ |J | < 2h, hence if all the parties outside of J abort
the execution, then there is an honest majority in J) to obtain a defense value,
i.e., a bit dJ

i . For each round i and for each such J , the value of dJ
i is shared

in an inner secret sharing scheme with threshold h-out-of-|J |. The idea is that
the shares of this inner secret sharing scheme (of dJ

i) should be revealed to the
parties of J at round i of the execution. Namely, each party in J should get one
of the (inner scheme) shares of dJ

i in round i.
To make sure that the above shares are not revealed to any subset before

round i, and at the same time, that the execution of the protocol proceeds, as
long as, the set of remaining active parties does not contain an honest majority,
the shares (of the inner scheme) for round i are shared in an outer secret sharing
scheme with threshold (t+1)-out-of-m. As a result, the adversary can never learn
anything about the shares of the i’th inner scheme without the help of honest
parties. In addition, to halt the computation in round i, the adversary must
instruct at least h parties to abort the computation.

Now, given a two-party protocol according to the above skeleton, and with
the additional property that ai and bi are sampled from the same distribution Di

and that it is possible to sample many such samples, completing the reduction
is done by selecting the defense values dJ

i from the distribution Di.
If the following extra property holds, then the resulting many-party protocol

would be α-fair as long as t < 2m/3. The extra property that we need to require
is that if the adversary in the 2-party protocol is given 22m defense values,
sampled from Di (and the honest party gets a single one), it will not be able to
bias the 2-party protocol by more than α.2

1.3.4 Applying the Reduction of Beimel et al. to the Protocols of
Haitner and Tsfadia. In this work, we use secret sharing schemes, in a man-
ner similar to [8], to reduce an m-party coin-tossing with t < 3m/4 malicious
to the 3-party construction of [25]. We do so in two steps. First, we apply the
above (simplified version of the) reduction of [8] to the (derandomized) two-party
protocol of [25] to obtain an auxiliary m̂-party coin-tossing protocol, tolerating
t̂ < 2m̂/3 corruptions. Then, we use the auxiliary protocol, as a building block
in the construction of the final m-party protocol that tolerates t < 3m/4 corrup-
tions. More specifically, the auxiliary protocol, parametrized by some ε ∈ [0, 1],
is used as defense values for subsets of parties for the case that at least m/4
corrupted parties abort the execution of the final protocol.

2Beimel et al. [8] use a slightly more involved technique to distribute defense values
to the different subsets of parties, allowing several subsets to be assigned the same
output bit, while maintaining the guarantee that the adversary cannot bias the output
of the honest parties without guessing the value of the special round i∗.

8

We next give an overview of both constructions. In Section 1.4, we exemplify
the constructions for the case that m = 7 and t = 5; in Section 1.4.1, we
instantiate the auxiliary protocol for the case of five parties with up to three
corruptions, and in Section 1.4.2, we use this construction to instantiate the
final protocol for the case of seven parties with up to five corruptions. In the
following, let ĥ = m̂− t̂ and h = m− t be lowerbounds on the number of honest
parties in the respective protocols. In our discussion the auxiliary protocol will be
used with m̂ being the number of active parties remaining after some corrupted
parties have prematurely aborted the execution of the final m-party protocol.
Specifically, we will have ĥ = h, since honest parties never prematurely abort
the computation.

Both the basic and the final protocols use two layers of (threshold) secret
sharing schemes. For each round i and for each protected subset of parties J
(we specify below which subsets are called protected for each construction), the
defense value for the set J in round i is dJ

i . This defense value is shared among
the parties of J in an appropriate secret sharing scheme (actual parameters for
each construction are specified below). This is called the inner secret sharing
scheme. For each round i, all the shares of all parties in the inner secret sharing
schemes for round i are shared in an (t̃ + 1)-out-of-m̃ threshold secret sharing
scheme, where m̃ and t̃ are the number of parties and the bound on the number of
corruptions in the respective construction. This is called the outer secret sharing
scheme.

The idea behind the outer secret sharing scheme is to provide two guarantees.
First, the adversary is never able to reconstruct the secrets without the partici-
pation of honest parties (which will only participate in the appropriate round).
Second, the adversary is only able to prevent the reconstruction of the secret of
the outer scheme (for round i) by instructing at least h̃ = m̃− t̃ corrupted par-
ties to abort before completing the reconstruction. Hence, the protocol proceeds
normally as long as more than t̃ parties are active. We stress that the adversary
is indeed able to instruct h̃ parties to abort in the process of reconstruction of
the secret of the outer secret sharing scheme, hence, seeing all the shares of cor-
rupted parties for round i, while not allowing honest parties to see their shares
of the inner scheme. Furthermore, since the adversary is rushing, it can actually
decide whether to do so or not – after seeing the shares of all honest parties.

In addition to the above, assume that t̃ < bm̃
b+1 for some natural b > 1,

and assume that at least h̃ corrupted parties aborted (which is the case if the
secret of the outer scheme cannot be reconstructed). Let J be the set of the
remaining parties and let tJ be the number of corrupted parties in J . Since the
number of honest parties in J remains the same as before, i.e., at least h > m̃

b+1 ,
it follows that tJ < |J | − m̃

b+1 . By assumption |J | ≤ t̃ < bm̃
b+1 , it follows that

tJ < |J | − m̃
b+1 < (b−1)·|J|

b . Thus, if h parties abort the execution of the final
construction, then less than 2/3 of the remaining parties are corrupted, and if
ĥ parties abort the execution of the auxiliary construction, then most of the
remaining parties are honest.

9

We now explain what protected subsets are and how the parameters for the
inner secret sharing schemes are chosen for each of the two constructions. We
begin with the final construction. Protected subsets of parties are subsets J
that are assigned a defense value dJ

i in each round i. These should include all
subsets that are liable to become the set of active parties, after a premature
abort by at least h parties. Since the number of aborting (corrupted) parties
may be anything between h and t, we should let protected subsets be all subsets
of parties J , such that h ≤ |J | ≤ t.3

To determine the parameters for the inner secret sharing scheme, consider
the case that a ≥ h corrupted parties have aborted in round i, hence the set of
active parties J is of size m − a. Let tJ be the number of corrupted parties in
J , then tJ ≤ t − a. Therefore, using a (t −m + |J | + 1)-out-of-|J |, we require
at least t − a + 1 = t − m + |J | + 1 parties of J for the reconstruction of dJ

i .
This ensures that the adversary was never able to reconstruct dJ

i−1 (which is the
defense value that the parties in J will use). Very similar reasoning are used for
the auxiliary construction, where a subset of parties is protected if it of any size
between ĥ and 2ĥ − 1, and the threshold of the inner secret sharing scheme is
set to ĥ-out-of-|J |.

It is left to specify what are the defense values dJ
i , which are the secrets that

are shared in the inner secret sharing schemes. Roughly speaking these values
are selected in the auxiliary and in the final constructions in a very similar
manner to that of the derandomized two-party and the three-party protocols
of [25] (respectively). In a bit more detail, in these protocols, there is a value
δi representing the expected value of the game, and the defense values for all
protected subsets describe a way to reveal a sample a bit according to δi.

In the final protocol, a defense value is an instantiation of the auxiliary
protocol, such that the output bit is 1 with probability δi. To be more precise,
dJ

i is the set of shares in the outer secret sharing of the instantiation of the
auxiliary protocol to be executed by the parties of J , in case all other parties
abort the computation. The exact same information can also be encapsulated
into a set of O(r2) elements from {−1, 1} taking the value with probability
1/2 + ε, where ε = ε(δi) ∈

[
−1

2 , 1
2
]

is such that the sum of r(r + 1)/2 elements
from {−1, 1} is positive with probability δi, whenever each element is 1 with
probability 1/2 + ε. Indeed, this fact will allow us to use the vector game lemma
of [25] (see Lemma 2) to bound the bias that the adversary can inflict by seeing
the defense values of all corrupted protected sets. The proof of security of the
final protocol is obtained by combining the above bound with a bound on the
bias of the auxiliary protocol.

We now specify how the defense values are selected in the auxiliary protocol.
Let J be a protected subset of parties, the parties of J jointly hold a set SJ of size
r(r + 1), over {−1, 1}, where each element takes the value of 1 with probability
1/2+ ε. Recall that xi be the sum of r− i+1 elements from {−1, 1}, where each

3Actually, in our construction, we only call subsets J , such that 2h − 1 ≤ |J | ≤ t.
This suffices, since if a smaller subset of active parties is left, it can use the defense
value of its lexicographically first superset of size 2h − 1.

10

element takes the value of 1 with probability 1/2+ε. Let δJ
i be the expected game

value in round i, according to the set SJ , that is, δJ
i is the probability that the

sum of the elements in a randomly chosen subset of SJ , of size
∑r−i

k=1 k, is at least∑i
k=1 xk. The bit bJ

i is sampled according to δJ
i , i.e., bJ

i = 1 with probability δJ
i .

To prove the security of this protocol, we introduce an extended version of the
Hypergeometric game (Lemma 3), presented in [25]. More specifically, we show
that even when the adversary sees a (constant) number of independent samples,
each from a different set, it cannot bias the output by much.

1.4 A Warm-Up Construction – A Seven-Party Protocol Tolerating
up to Five Corrupted Parties

Following the overview of our constructions, given in Section 1.3.4, in this section,
we show how to instantiate our final construction for the case of 7 parties, where
at most 5 are corrupted. In Section 1.4.1, we instantiate the auxiliary protocol for
5 parties with at most 3 corruptions, and in Section 1.4.2 we use it to instantiate
the final protocol for 7 parties with at most 5 corruptions. In the following, let
ε ∈

[
−1

2 , 1
2
]
, and for i ∈ {0, . . . , r} let si =

∑r−i
k=1 k.

1.4.1 A Five-Party Protocol Tolerating up to Three Corrupted Par-
ties. We now describe the algorithm HG(ε, 5, 3), generating shares for 5 parties
with 3 corrupted parties. This is a specific instantiation of the more general func-
tionality described in Algorithm 5. Let Binn,ε denote the binomial distribution
over {−1, 1} (i.e., a sum of n samples from {−1, 1}, each taking the value of 1
with probability 1

2 + ε).

Selecting defenses:
1. For every J ⊂ [5] of size 3, let SJ be a set with 2s0 elements from {−1, 1},

each taking the value of 1 with probability 1
2 + ε.

2. For every i ∈ [r] let x̂i ← Binr−i+1,ε.
3. For every i ∈ {0, . . . , r} and every J ⊆ [5] of size 3:

(a) Let AJ
i be a random subset of SJ of size si.

(b) Let d̂J
i be 1 if

i∑
k=1

x̂k +
∑

a∈AJ
i

a ≥ 0, and 0 otherwise.

Sharing the values:
– For every i ∈ {0, 1 . . . , r}, J ⊂ [5] of size 3, and j ∈ J , let dJ

i [j] be the
share of party Pj of the secret dJ

i , in a 2-out-of-3 secret sharing.
– For every i ∈ [r], J ⊂ [5] of size 3, and for every j′ ∈ J , let dJ

i [j′, j] be the
share of party Pj of the secret dJ

i [j′], in a 4-out-of-5 secret sharing, such
that party Pj′ is required in order to recover dJ

i [j′] (See Construction 4).

Interaction rounds. The interaction of the parties proceeds in r rounds. In round
i ∈ [r], party Pj broadcasts dJ

i [j′, j], for every J ⊂ [5] of size 3, and for every
j′ ∈ J . If a single party aborts the execution, then the remaining 4 parties can
continue with the protocol. If two or three parties abort the execution, then the

11

remaining parties reconstruct dJ
i′ , where J is lexicographically first set of size 3,

which contains all the indices of the active parties, and i′ is the maximum i for
which the parties have enough shares to reconstruct. The honest parties output
that bit.

If after r rounds, there are at least 4 active parties, then the parties recon-
struct the last joint defense for the lexicographically first subset of them, and
the honest parties output that bit.

Security. By the properties of the two layers of secret sharing, in each round
the adversary learns a constant number of defense values, which are samples
according to the Hypergeometric distribution. Intuitively, the security of the
above protocol is reduced to an extended version of the Hypergeometric game
considered by [25], with a constant number of samples. Indeed, in the proof of
security of the general construction, given in Section 3.3.2, we include the bound
for the extended Hypergeometric game.

1.4.2 The Seven-Party Protocol. We are now ready to describe our 7 party
protocol. We first describe the share generator. Given x1 . . . xi, for some i ∈ [r]
we let δi(x1 . . . xi) be the probability that then sum of si uniform {−1, 1} bits
is at least −

∑i
k=1 xk. We call δi the expected outcome of the protocol in round

i. In the following we let Binn := Binn,0.

Selecting defenses:
1. For every i ∈ [r], let xi ← Binr−i+1.
2. Let εi ∈

[
− 1

2 , 1
2
]

be such that, the expected outcome of an honest exe-
cution with parameter ε = εi of the 5-party protocol from Section 1.4.1
is δi(x1 . . . xi).

3. For every J ⊂ [7], such that 4 ≤ |J | ≤ 5, let dJ
i ← HG(εi, |J |, |J | − 2).

4. For every J ⊂ [7], such that 2 ≤ |J | ≤ 3, let dJ
i be a bit, sampled with

probability δi(x1 . . . xi).
Sharing the values:

– For every i ∈ [r] and J ⊂ [7], such that 4 ≤ |J | ≤ 5, let dJ
i [j] be the

share of party Pj of the secret dJ
i , in a (|J |−1)-out-of-|J | secret sharing.

– For every i ∈ [r], J ⊂ [7], such that 4 ≤ |J | ≤ 5, and for every j′ ∈ J ,
let dJ

i [j′, j] be the share of party Pj of the secret dJ
i [j′], in a 6-out-of-7

secret sharing, such that party Pj′ is required in order to recover dJ
i [j′]

(See Construction 4).
– For every i ∈ [r] and J ⊂ [7], such that 2 ≤ |J | ≤ 3, let dJ

i [j] be the
share of party Pj of the secret dJ

i , in a 2-out-of-|J | secret sharing.

Interaction rounds. The interaction of the parties proceeds in r rounds. In round
i ∈ [r] party Pj broadcasts dJ

i [j′, j], for every J ⊂ [7], such that 3 ≤ |J | ≤ 5,
and for every j′ ∈ J .

If a single party aborts the execution, then the remaining 6 parties can con-
tinue with the protocol (they can do so by the properties of the 6-out-of-7 secret
sharing scheme). If more parties abort the execution, then the remaining active

12

parties reconstruct dJ
i′ , where J is the lexicographic first set containing all their

indices, and i′ is the maximum i for which the parties have enough shares to
reconstruct. If more than three parties remain, then they execute the five party
protocol from Section 1.4.1. Otherwise, there is an honest majority, and hence,
the remaining parties reconstruct dJ

i′ , which is a bit.
If after r rounds, there are at least 5 active parties, then each pair reconstruct

its last common defense (Note that either all of these defenses are equal to 1 or
all of them are equal to 0).

Security. In each round i ∈ [r], the adversary learns an O
(
r2) bits sampled

according to εi. If only one party aborts the execution, then the remaining parties
can still continue, as the secret sharing is a 6-out-of-7. Hence the adversary
must instruct at least two parties to abort. In case at least two parties abort
at round i, the remaining active parties can reconstruct the defense from the
round i − 1. They then, execute the protocol described in Section 1.4.1. As
this is the Vector game considered by [25], the adversary does not gain much
advantage from aborting after seeing the above O

(
r2) bits samples (assuming

that the remaining parties run the defense protocol honestly). Of course, we
cannot assume that they do, however, combining the above with the security of
the 5-party protocol, we get that in total, the adversary’s gain remains small.

1.5 Organization

In Section 2, we provide some notations and definitions that we use in this work,
and recall some bounds ononline Binomial games from [25]. In Section 3 we
present our main construction and provide a proof for Theorem 1.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values. All logarithms considered here are in base two. For n ∈ N,
let [n] = {1, 2 . . . n}. Given a random variable (or a distribution) X, we write
x← X to indicate that x is selected according to X. The support of a distribution
D over a finite set S, denoted Supp(D), is defined as {s ∈ S | D(s) > 0}. For a
random variable X and a natural number n we let Xn =

(
X(1), X(2), . . . , X(n)),

where the X(i)’s are i.i.d. copies of X.
Let n ∈ N and ε ∈

[
−1

2 , 1
2
]
. Let Ber(ε) be the Bernoulli distribution over

{−1, 1}, taking 1 with probability 1
2 +ε. Define the Binomial distribution Binn,ε,

by Binn,ε(k) = Pr [
∑n

i=1 xi = k] where xi are i.i.d according to Ber(ε). Let
B̂inn,ε(k) = Prx←Binn,ε [x ≥ k] =

∑
t≥k Binn,ε(t). For ε = 0 we will simply write

Binn and B̂inn.
Define the Hypergeometric distribution HGn,w,m, by HGn,w,m(k) =

PrS⊆S,|S|=m

[∑
s∈S s = k

]
, where S is chosen uniformly, S is a set of size

13

n, whose members are from {−1, 1}, and it holds that
∑

s∈S s = w. Let
ĤGn,w,m(k) = Prx←HGn,w,m [x ≥ k] =

∑
t≥kHGn,w,m(t). For i ∈ {0, 1, . . . n}

let si(n) =
∑n−i

k=1 k = (n−i+1)(n−i)
2 . When n is clear from the context we write

si. For a set S we let w (S) =
∑

s∈S s.
We make use of the following facts.

Fact 2 (Hoeffding’s inequality for {−1, 1}) Let n, t ∈ N and let ε ∈[
−1

2 , 1
2
]
. Then

Pr
x←Binn,ε

[|x− 2εn| ≥ t] ≤ 2e−
t2
2n .

Fact 3 (Hoeffding’s inequality for the hypergeometric distribution)
Let m ≤ n ∈ N and let w ∈ Z satisfying |w| ≤ n. Then

Pr
x←HGn,w,m

[|x− µ| ≥ t] ≤ e−
t2

2m ,

where µ = Ex←HGn,w,m [x] = mw
n

2.2 Coin-Tossing Protocols

A multiparty coin-tossing protocol with m parties is defined using m probabilis-
tic polynomial-time Turing machines p1, . . . , pm having the security parameter
1n as their only input. The coin-tossing computation proceeds in rounds, in each
round, the parties broadcast and receive messages on a broadcast channel. The
number of rounds in the protocol is typically expressed as some polynomially-
bounded function r in the security parameter. At the end of protocol, the (hon-
est) parties should hold a common bit w. We denote by CoinTossε() the ideal
functionality that gives the honest parties the same bit w, distributed according
to ε, that is, Pr[w = 1] = 1/2 + ε and Pr[w = 0] = 1/2 − ε. We let CoinToss()
be CoinToss0().

In this work we consider a malicious static computationally-bounded adver-
sary, i.e., a non-uniform that runs in a polynomial-time. The adversary is allowed
to corrupt some subset of the parties. That is, before the beginning of the pro-
tocol, the adversary corrupts a subset of the parties that may deviate arbitrarily
from the protocol, and thereafter the adversary sees the messages sent to the
corrupt parties and controls the messages sent by the corrupted parties. Still, for
the most of the technical discussion of the paper, we only discuss fail-stop ad-
versaries. A fail-stop adversary acts completely honestly (i.e., as required by the
prescribed protocol), with the only difference that it can abort the computation
at any point in the execution of the protocol. We, then, use standard techniques
([19, 8]) to turn a coin-tossing protocol in the fail-stop model into a coin-tossing
protocol (with the same fairness and round-complexity) in the malicious model.
The honest parties follow the instructions of the protocol.

The parties communicate in a synchronous network, using only a broadcast
channel. The adversary is rushing, that is, in each round the adversary hears the

14

messages sent by the honest parties before broadcasting the messages of the cor-
rupted parties for this round (thus, the messages broadcast by corrupted parties
can depend on the messages of the honest parties broadcast in this round).

2.3 Security Definitions for Multiparty Protocols

The security of multiparty computation protocols is defined using the real
vs. ideal paradigm. In this paradigm, we consider the real-world model, in which
protocols are executed. We then formulate an ideal model for executing the task
at hand. This ideal model involves a trusted party whose functionality captures
the security requirements of the task. Finally, we show that the real-world pro-
tocol “emulates” the ideal-world protocol: For any real-life adversary A there
should exist an ideal-model adversary S (also called simulator) such that the
global output of an execution of the protocol with A in the real-world model is
distributed similarly to the global output of running S in the ideal model. In
the coin-tossing protocol, the parties do not have inputs. Thus, to simplify the
definitions, we define secure computation without inputs (except for the security
parameters).

The Real Model. Let Π be an m-party protocol computing F . Let A be a non-
uniform probabilistic polynomial time adversary with auxiliary input aux, cor-
rupting a subset C of the parties. Let REALΠ,A(aux)(1n) be the random variable
consisting of the view of the adversary (i.e., its random input and the messages
it got) and the output of the honest parties, following an execution of Π, where
each party pj begins by holding the input 1n.

The Ideal Model. The basic ideal model we consider is a model without abort.
Specifically, there are parties {p1, . . . , pm}, and an adversary S who has cor-
rupted a subset I of them. An ideal execution for the computing F proceeds as
follows:

Inputs: Party pj holds a security parameter 1n. The adversary S has some
auxiliary input aux.

Trusted party sends outputs: The trusted party computes F(1n) with uni-
formly random coins and sends the appropriate outputs to the parties.

Outputs: The honest parties output whatever they received from the trusted
party, the corrupted parties output nothing, and S outputs an arbitrary
probabilistic polynomial-time computable function of its view.

Let IDEALF,S(aux)(1n) be the random variable consisting of the output of
the adversary S in this ideal world execution and the output of the honest parties
in the execution.

In this work we consider a few formulations of the ideal-world, and consider
composition of a few protocols, all being executed in the same real-world, how-
ever, each secure with respect to a different ideal-world. We prove the security
of the resulting protocol, using the hybrid model techniques of Canetti [13].

15

2.3.1 1/p-Indistinguishability and 1/p-Secure Computation. As ex-
plained in the introduction, the ideal functionality CoinToss() cannot be im-
plemented when there is no honest majority. We use 1/p-secure computation,
defined by [21, 28], to capture the divergence from the ideal world. This notion
applies to general secure computation. We start with some notation.

A function µ(·) is negligible if for every positive polynomial q(·) and all
sufficiently large n it holds that µ(n) < 1/q(n). A distribution ensemble
X = {Xa,n}a∈{0,1}∗,n∈N is an infinite sequence of random variables indexed
by a ∈ {0, 1}∗ and n ∈ N.

Definition 1 (Statistical Distance and 1/p-indistinguishability). We de-
fine the statistical distance between two random variables A and B as the func-
tion

SD(A, B) = 1
2
∑

α

∣∣∣Pr [A = α]− Pr [B = α]
∣∣∣.

For a function p(n), two distribution ensembles X = {Xa,n}a∈{0,1}∗,n∈N and
Y = {Ya,n}a∈{0,1}∗,n∈N are computationally 1/p-indistinguishable, denoted X

1/p
≈

Y , if for every non-uniform polynomial-time algorithm D there exists a negligible
function µ(·) such that for every n and every a ∈ {0, 1}∗,∣∣∣Pr [D(Xa,n) = 1]− Pr [D(Ya,n)) = 1]

∣∣∣ ≤ 1
p(n)

+ µ(n).

Two distribution ensembles are computationally indistinguishable, denoted
X

C≡ Y , if for every c ∈ N they are computationally 1
nc -indistinguishable.

We next define the notion of 1/p-secure computation [21, 28, 7]. The defi-
nition uses the standard real/ideal paradigm [18, 13], except that we consider
a completely fair ideal model (as typically considered in the setting of honest
majority), and require only 1/p-indistinguishability rather than indistinguisha-
bility.

Definition 2 (perfect 1/p-secure computation). An m-party protocol Π
is said to perfectly (t, 1/p)-secure compute a functionality F if for every non-
uniform adversary A in the real model, corrupting up to t of the parties, there
exists a polynomial-time adversary S in the ideal model, corrupting the same
parties as A, such that for every n ∈ N and for every aux ∈ {0, 1}∗

SD(IDEALF,S(aux)(1n), REALΠ,A(aux)(1n)) ≤ 1
p(n)

.

Definition 3 (1/p-secure computation [21, 28, 7]). Let p = p(n) be a func-
tion. An m-party protocol Π is said to (t, 1/p)-securely compute a functionality
F if for every non-uniform probabilistic polynomial-time adversary A in the real
model, corrupting up to t of the parties, there exists a non-uniform probabilis-
tic polynomial-time adversary S in the ideal model, corrupting the same parties

16

as A, such that the following two distribution ensembles are computationally
1/p(n)-indistinguishable{

IDEALF,S(aux)(1n)
}

aux∈{0,1}∗,n∈N
1/p
≈

{
REALΠ,A(aux)(1n)

}
aux∈{0,1}∗,n∈N .

We next define the notion of secure computation and notion of bias of a coin-
tossing protocol by using the previous definition.

Definition 4 (secure computation). An m-party protocol Π t-securely com-
putes a functionality F , if for every c ∈ N , the protocol Π is (t, 1/nc)-securely
compute the functionality F .

Definition 5 (ε-coin-toss). We say that a protocol is a ε-coin-toss protocol
with bias 1/p, tolerating up to t corruptions, if it is a (t, 1/p)-secure protocol for
the functionality CoinTossε().

Definition 6 (coin tossing). We say that a protocol is a coin-tossing protocol
with bias 1/p, tolerating up to t corruptions, if it is a (t, 1/p)-secure protocol for
the functionality CoinToss().

2.4 Security with Identifiable Abort

We use here a variant of secure computation with abort, where upon abort, at
least one cheating party is identified to all honest parties. This definition was first
formally stated by Aumann and Lindell [5], and was also considered in [8, 7, 27],
(in the first two, it was called security with abort and cheat detection).

Roughly speaking, our definition requires that one of two events is possible:
If at least one party deviates from the prescribed protocol, then the adversary
obtains the outputs of these parties (but nothing else), and all honest parties are
notified by the protocol that these parties have aborted. Otherwise, the protocol
terminates normally, and all parties receive their outputs. Again, we consider
the restricted case where parties hold no private inputs. The formal definition
uses the real vs. ideal paradigm as discussed in Section 2.3. We next describe
the appropriate ideal model.

Execution in the ideal model. Let C ⊆ [m] denote the indices of the corrupted
parties, controlled by an adversary A. An ideal execution proceeds as follows:

Inputs: Each party obtains a security parameter 1n. The adversary A receives
an auxiliary input denoted aux.

Trusted party sends outputs to adversary: The trusted party computes
F(1n) with uniformly random coins and sends the appropriate outputs to
the parties pj such that j ∈ C.

Adversary instructs the trusted party to continue or halt: A sends
either a “ continue ” message or {“ abortj”}j∈J to the trusted party on
behalf of a set of corrupt parties indexed by J . If it sends a “ continue ”
message, the trusted party sends the appropriate output to the parties pj

17

for j /∈ C (i.e., to all honest parties). Otherwise, if it sends {“ abortj”}j∈J
for some set of indices of corrupt parties J ⊆ C, then the trusted party sends
the set J to all parties pj for j /∈ C.

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties output nothing. The adversary A out-
puts a probabilistic polynomial-time computable function of the auxiliary
input aux, and the outputs obtained from the trusted party.

We let IDEALID
F,S(aux)(1n) and REALΠ,A(aux)(1n) be defined as in Section 2.3

(where in this case IDEALID
F,S(aux)(1n) refers to the above execution with iden-

tifiable abort of F). This ideal model is different from the ideal world without
identifiable abort (see, e.g., [18]); without identifiable abort, the trusted party
sends a ⊥ symbol when the trusted party gets an abort message. With identifi-
able abort, the honest parties know the identities of the corrupted parties that
cause the abort. This identifiable abort is achieved by most multiparty protocols,
including that of [19], but not all (e.g., the protocol of [20] does not meet this
requirement). Using this notation we define secure computation with abort and
identifiable abort.

Definition 7. Let F and Π be as above. A protocol Π is said to t-securely
compute F with identifiable abort if for every non-uniform polynomial-time ad-
versary A for the real model, corrupting at most t parties, there exists a non-
uniform polynomial-time adversary S for the ideal model corrupting the same
parties as A, such that{

IDEALID
F,S(aux)(1n)

}
aux∈{0,1}∗,n∈N

C≡
{

REALΠ,A(aux)(1n)
}

aux∈{0,1}∗,n∈N .

2.5 Cryptographic Tools

We next informally describe two cryptographic tools that we use in our protocols.

Signature Schemes. A signature on a message proves that the message was
created by its presumed sender, and its content was not altered. A signature
scheme is a triple (Gen, Sign, Ver) containing the key generation algorithm Gen,
which gets as input a security parameter 1n and outputs a pair of keys, the
signing key KS and the verification key Kv, the signing algorithm Sign, and the
verifying algorithm Ver. We assume that it is infeasible to produce signatures
without holding the signing key.

Secret-Sharing Schemes. An α-out-of-m secret-sharing scheme is a mechanism
for sharing data among a set of parties such that every set of parties of size
α can reconstruct the secret, while any smaller set knows nothing about the
secret. In this paper, we use Shamir’s α-out-of-m secret-sharing scheme [34].
In this scheme, the shares of any α − 1 parties are uniformly distributed and
independent of the secret. Furthermore, given at most such α − 1 shares and a
secret s, one can efficiently complete them to m shares of the secret s. Using this

18

scheme, [8] presented a way to construct a secret sharing scheme with respect to
a certain party. We use that in our construction as well.

Construction 4 Let s be some secret taken from some finite field F. We share
s among m parties with respect to a special party pj in an α-out-of-m secret-
sharing scheme as follows:

1. Choose shares
(
s(1), s(2)) of the secret s in a two-out-of-two secret-sharing

scheme, that is, select s(1) ∈ F uniformly at random and compute s(2) =
s− s(1). Denote these shares by maskj (s) and comp (s), respectively.

2. Generate shares
(
λ(1), . . . , λ(j−1), λ(j+1), . . . , λ(m)) of the secret comp (s) in

an (α − 1)-out-of-(m − 1) Shamir’s secret-sharing scheme. For each ℓ ̸= j,
denote compℓ (s) = λ(ℓ).

Output:

– The share of party pj is maskj (s). We call this share, pj’s masking share.
– The share of each party pℓ, where ℓ ̸= j, is compℓ (s). We call this share,

pℓ’s complement share.

In the above, the secret s is shared among the parties in P in a secret-sharing
scheme such that any set of size at least α that contains pj can reconstruct the
secret. In addition, similarly to the Shamir secret-sharing scheme, the following
property holds: for any set of β < α parties (regardless if the set contains pj), the
shares of these parties are uniformly distributed and independent of the secret.
Furthermore, given such β < α shares and a secret s, one can efficiently complete
them to m shares of the secret s and efficiently select uniformly at random one
vector of shares competing the β shares to m shares of the secret s.

2.6 Claims and Definitions from [25]

The following definitions and propositions are taken verbatim from [25] and
they will serve us as well. Given a partial view of a fail-stop adversary, we are
interested in the expected outcome of the parties, conditioned on this view and
the adversary making no further aborts.

Definition 8 (view value). Let π be a protocol in which the honest parties
always output the same bit value. For a partial view v of the parties in a fail-
stop execution of π, let Cπ(v) denote the parties full view in an honest execution
of π conditioned on v (i.e. all parties that do not abort in v act honestly in
Cπ(v)). Let ∆π(v) = Ev′←Cπ(v) [out(v′)], where out(v′) is the common output of
the non-aborting parties in v′.

A protocol is unbiased, if no fail-stop adversary can bias the common output
of the honest parties by too much.

Definition 9 ((t, α)-unbiased protocol). Let π be an m-party, r-round pro-
tocol, in which the honest parties always output the same bit value. We say that

19

π is (t, α)-unbiased, if the following holds for every fail-stop adversary A con-
trolling the parties indexed by a subset C ⊂ [m] of size at most t. Let V be A’s
view in a random execution of π, and let Ij be the index of the j’th round in
which A sent an abort message (set to r + 1 if no abort occurred). Let Vi be the
prefix of V at the end of the i’th round, letting V0 be the view consisting of only
the random coins of A, and let V −i be the prefix of Vi with the i’th round abort
message (if any) removed. Then,

E
V

∣∣∣∣∣∣
∑

j∈|C|

(
∆(VIj)−∆(V −Ij

)
)∣∣∣∣∣∣
 ≤ α

where ∆ = ∆π according to Definition 8.

The following is an alternative characterization of fair coin-tossing protocols
(against fail-stop adversaries).

Lemma 1 ([25, Lemma 2.18]). Let n ∈ N be a security parameter and let π be
a (t, α)-unbiased coin-tossing protocol with α(n) ≤ 1

2−
1

p(n) , for some polynomial
p. Then π is a (t, α(n) + neg(n))-secure coin tossing protocol against fail-stop
adversaries.

The following lemmata and propositions assume that the protocol is of a
specific form. More concretely, let ε ∈

[
−1

2 , 1
2
]
, f be a randomized function (that

may depend on ε), and let πε,f be an r-round m-party coin-tossing protocol, such
that, before any interaction takes place, every party learns D0, which is sampled
according to the current game value, and for every round i ∈ [r], every party first
learns a defense Di = f(i, Yi), and then the coin Xi, where Xi ← Binr−i+1,ε,

Yi =
i∑

k=1
Xk. We let Vπε,f

denote the adversary’s view in a random execution of

πε,f . We further assume that adversary never aborts after seeing Xi.

Lemma 2 (Vector Game [25, Lemma 4.5]). Let c ∈ N and let r ∈ N be the
number of rounds. Let f : [r]×Z→ {−1, 1}c·r2

be a randomized function that on
input (i, y) outputs c · r2 elements from {−1, 1}, each takes the value of 1 with
probability Ber(ε), where ε ∈

[
− 1

2 , 1
2
]

satisfies B̂ins0,ε(0) = B̂insi(−y). Then:

E
Vπ0,f

[∣∣∣∆ (Vπ0,f

)
−∆

(
V −π0,f

)∣∣∣] = O

(
log3 r

r

)
.

Lemma 3 (Hypergeometric Game [25, Lemma 4.4]). Let w ∈ Z, ε ∈[
−1

2 , 1
2
]

and let r ∈ N be the number of rounds. Let f : [r]×Z→ {0, 1} be a ran-
domized function that on input (i, y) outputs 1 with probability ĤG2s0,w,si(−y)
and 0 otherwise. Assuming that |w| ≤ c ·

√
log r · s0, for some constant c, then:

E
Vπε,f

[∣∣∣∆ (Vπε,f

)
−∆

(
V −πε,f

)∣∣∣] = O

(
log3 r

r

)
.

20

Lemma 4 (Ratio Lemma [25, Lemma 4.10]). Let r ∈ N be the number of
rounds, and let ε ∈

[
−1

2 , 1
2
]
. In the following we let Y0 = 0. Let

Xi :=
{

x ∈ Supp(Xi) : |x| ≤ 4
√

log r · (r − i + 1)
}

and

Yi :=
{

y′ ∈ Supp(Yi−1) : |y′ + 2ε · si−1| ≤ 4
√

log r · si−1

}
.

Assume |ε| ≤ 2
√

log r
s0

and that for every i ∈ [r −
⌊
log2.5 r

⌋
] and y ∈ Yi, there

exists a set Di,y such that for every x ∈ Xi, and every d ∈ Di,y ∩ Supp(f(i, y +
Xi) | Yi−1 = y, Xi ∈ Xi), it holds that:

Pr[f(i, y + Xi) /∈ Di,y | Yi−1 = y] ≤ 1
r2

and∣∣∣∣1− Pr[f(i, y + Xi) = d | Yi−1 = y ∧Xi = x]
Pr[f(i, y + Xi) = d | Yi−1 = y ∧Xi ∈ Xi]

∣∣∣∣ ≤ c·
√

log r

r − i
·
(

1 + |x|√
r − i + 1

)
,

for some constant c. Then:

E
Vπε,f

[∣∣∣∆ (Vπε,f

)
−∆

(
V −πε,f

)∣∣∣] = O

(
log3 r

r

)
.

Proposition 1 ([25, Proposition 4.6]). For every randomized functions f, g,
and for every ε ∈

[
− 1

2 , 1
2
]
, it holds that

E
Vπε,g◦f

[∣∣∣∆ (Vπε,g◦f

)
−∆

(
V −πε,g◦f

)∣∣∣] ≤ E
Vπε,f

[∣∣∣∆ (Vπε,f

)
−∆

(
V −πε,f

)∣∣∣]
Proposition 2 ([25, Proposition 4.7]). Let ε ∈

[
−1

2 , 1
2
]

and f be some ran-
domized function. If Pr[Yr ≥ 0] /∈

[1
r2 , 1− 1

r2

]
, where r ∈ N is the number of

rounds, then
E

Vπε,f

[∣∣∣∆ (Vπε,f

)
−∆

(
V −πε,f

)∣∣∣] ≤ 2
r

.

2.7 An Extension of the Hypergeometric Game

In this section we introduce an extended version of the Hypergeometric game
(Lemma 3), presented in [25]. More specifically, we let the adversary see a con-
stant number of independent samples, each from a different set. Furthermore,
we augment the view of the adversary with all of these sets.

Lemma 5. Let ξ ∈ N be some constant, let w = (w1 . . . , wξ) ∈ Zξ, let ε ∈[
−1

2 , 1
2
]
, and let r ∈ N be the number of rounds. For k ∈ [ξ], let hk : [r] × Z →

{0, 1} be a randomized function that on input (i, y) outputs 1 with probability

21

ĤG2s0,wk,si(−y) and 0 otherwise. Assuming that for every k ∈ [ξ], it holds that
|wk| ≤ c

√
log r · s0, for some constant c, then:

E
Vπε,h

[∣∣∣∆ (Vπε,h

)
−∆

(
V −πε,h

)∣∣∣] = O

(
2ξ · log3 r

r

)
,

where h(i, y) = (h1(i, y), . . . , hξ(i, y)).

Proof. As in the definitions in Lemma 4, we let:

Xi :=
{

x ∈ Supp(Xi) : |x| ≤ 4
√

log r · (r − i + 1)
}

and

Yi :=
{

y′ ∈ Supp(Yi−1) : |y′ + 2ε · si−1| ≤ 4
√

log r · si−1

}
.

We view h as a composition of two randomized functions f and g, sim-
ilarly to the way done in [25]. For i ∈ [r] and y ∈ Z, let f(i, y) =
((w (Ti,1) , y + t1), . . . , (w (Ti,ξ) , y + tξ)), where Ti,k is sampled as a random sub-
set of size 2si, from a set Tk of size 2s0, over {−1, 1}, with w (Tk) = wk, and
tk ← HG2si,w(Ti,k),si

. Let g′ (w′, y′) be 1 if y′ ≥ 0 and 0 otherwise. Then h can be
viewed as g (f (i, y)), where g is defined to be the appliance of g′ component-wise.

Let (f1(i, y), . . . , fξ(i, y)) := f(i, y). In order to prove Lemma 3, Haitner and
Tsfadia [25] proved that a single value sampled according to any such fk, is
nearly independent of a value sampled according to Xi. In more detail, they
proved that for every i ∈ [r−

⌊
log2.5 r

⌋
], k ∈ [ξ], y ∈ Yi, x ∈ Xi, and d ∈ D′i,y :=

Di,y ∩ Supp (fk(i, y + Xi) | Yi−1 = y, Xi ∈ Xi), it holds that:∣∣∣∣1− Pr[fk(i, y + Xi) = d | Yi−1 = y ∧Xi = x]
Pr[fk(i, y + Xi) = d | Yi−1 = y ∧Xi ∈ Xi]

∣∣∣∣ ≤ c′ · α(i, r), (1)

where

α(i, r) :=
√

log r

r − i
·
(

1 + |x|√
r − i + 1

)
, where

Di,y =
{

(w′, y′) : |w′| , |y − y′| = (c + 8)
√

log r · si

}
,

and where c′ is some constant. Moreover, using Hoeffding’s inequality they
proved (see [25, Equation 33]) that

Pr[fk(i, y + Xi) /∈ Di,y | Yi−1 = y] ≤ 2
r4 .

This implies that for large enough r’s it holds that

Pr[fk(i, y + Xi) /∈ Di,y | Yi−1 = y] <
1

ξr2 ,

22

and hence, by the union bound we get that

Pr[f(i, y + Xi) /∈ Dξ
i,y | Yi−1 = y] ≤ 1

r2 .

We now give an upper bound on∣∣∣∣1− Pr[(f(i, y + Xi)) = d | Yi−1 = y ∧Xi = x]
Pr[(f(i, y + Xi)) = d | Yi−1 = y ∧Xi ∈ Xi]

∣∣∣∣ .
Fix i ∈ [r −

⌊
log2.5 r

⌋
], y ∈ Yi, and x ∈ Xi. Let d = (d1 . . . , dξ) ∈

(
D′i,y

)ξ, and
for every k ∈ [ξ] let

βk(i, r) := Pr[fk(i, y + Xi) = dk | Yi−1 = y ∧Xi = x]
Pr[fk(i, y + Xi) = dk | Yi−1 = y ∧Xi ∈ Xi]

.

We define β(i, r) as follows:

β(i, r) =

min {βk(i, r) : k ∈ [ξ]} if
ξ∏

k=1
βk(i, r) ≤ 1

max {βk(i, r) : k ∈ [ξ]} else

By the independence of the samples, we get that∣∣∣∣1− Pr[(f(i, y + Xi)) = d | Yi−1 = y ∧Xi = x]
Pr[(f(i, y + Xi)) = d | Yi−1 = y ∧Xi ∈ Xi]

∣∣∣∣ =

∣∣∣∣∣1−
ξ∏

k=1

βk(i, r)

∣∣∣∣∣ . (2)

It also holds that∣∣∣∣∣1−
ξ∏

k=1

βk(i, r)

∣∣∣∣∣ ≤ ∣∣∣1− (β(i, r))ξ
∣∣∣ =

∣∣∣∣∣(1− β(i, r)) ·

(
ξ−1∑
k=0

(β(i, r))k

)∣∣∣∣∣ , (3)

where the inequality is by definition of β(i, r). Since

β(i, r) ∈ [1− c′ · α(i, r), 1 + c′ · α(i, r)] , (4)

and since α(i, r) = o(1), it holds that for a large enough r, β(i, r) ≤ 2. Combining
the above equations gives the desired upper bound:∣∣∣∣1− Pr[(f(i, y + Xi)) = d | Yi−1 = y ∧Xi = x]

Pr[(f(i, y + Xi)) = d | Yi−1 = y ∧Xi ∈ Xi]

∣∣∣∣ (5)

=

∣∣∣∣∣1−
ξ∏

k=1

βk(i, r)

∣∣∣∣∣ ≤ ∣∣∣1− (β(i, r))ξ
∣∣∣ =

∣∣∣∣∣(1− β(i, r)) ·

(
ξ−1∑
k=0

(β(i, r))k

)∣∣∣∣∣
≤ c′ · α(i, r) ·

ξ−1∑
k=0

(β(i, r))k ≤ c′ · α(i, r) ·
ξ−1∑
k=0

2k = c′(2ξ − 1) · α(i, r),

23

where the second inequality is by Equation (1). By Lemma 4 it holds that

E
Vπε,f

[∣∣∣∆ (Vπε,f

)
−∆

(
V −πε,f

)∣∣∣] = O

(
log3 r

r

)
.

Using Proposition 1 we get that

E
Vπε,h

[∣∣∣∆ (Vπε,h

)
−∆

(
V −πε,h

)∣∣∣] = O

(
log3 r

r

)
.

3 The Multiparty Protocol

In this section, we describe our construction and prove Theorem 1. This result
is formally restated in Section 3.3 (as Corollary 1) and proved therein.

In Section 3.1, we describe a construction of an m-party coin-tossing protocol
tolerating up to 2/3 corruptions. In Section 3.2, we describe the main construc-
tion of an m-party almost optimally fair coin-tossing protocol tolerating up to
3/4 corruptions.

3.1 A Coin-Tossing Protocol for t < 2m/3

The following algorithm, is an extension of the two-party share generator, pre-
sented in [25], to the multiparty case.
. .
Algorithm 5 (MultipartyShareGen<2/3 – HG(ε, m, t))
Let r ∈ N be the number of rounds.

Input: Number of rounds r, ε = ε(n) ∈
[
−1

2 , 1
2
]
, the number of parties m, and

an upper bound t on the number of corrupted parties.
Denote h = m− t. Observe that a subset J ⊂ [m] of size 2h− 1, containing
all honest parties has an honest majority.

Selecting coins and defenses:
1. For every J ⊂ [m] of size 2h− 1:

(a) Let SJ be a set with 2s0 elements from {−1, 1}, where each element
is sampled according to Ber(ε).

(b) Let AJ
0 be a random subset of SJ of size s0.

(c) Let dJ
0 be 1 if

∑
a∈AJ

0

a ≥ 0, and 0 otherwise .

2. For i = 1 to r:
(a) Sample xi ← Binr−i+1,ε.
(b) For every J ⊂ [m] of size 2h − 1, we let AJ

i be a random subset of
SJ of size si.

(c) For every J ⊂ [m] of size 2h− 1, let dJ
i be 1 if

i∑
k=1

xk +
∑

a∈AJ
i

a ≥ 0,

and 0 otherwise .
Sharing the values:

24

1. For i ∈ [r], let xi[j] be a share of xi in a (t + 1)-out-of-m secret sharing.
2. For i ∈ {0, . . . , r}, j ∈ [m], and J ⊂ [m] of size 2h − 1, let dJ

i [j] be a
share of dJ

i in a h-out-of-(2h− 1) secret sharing.
3. For i ∈ [r], j ∈ [m], J ⊂ [m] of size 2h− 1, and j′ ∈ J , let dJ

i [j′, j] be a
share of dJ

i [j′] in a (t+1)-out-of-m secret sharing, such that party Pj′ is
required in order to recover dJ

i [j′]. This can be done with Construction 4.
Output: Party Pj receives dJ ′

i [j′, j], dJ
0 [j], xi[j] for all i ∈ [r], J, J ′ ⊂ [m] of

size 2h− 1, j ∈ J , and j′ ∈ J ′.
. .

. .
Protocol 6 (Multiparty<2/3 Coin-Toss) Let r ∈ N be the number of rounds.
Let m̂, and t̂ be two constants where m̂ denotes the number of parties, and t̂ is
an upper bound on the number of corrupted parties.

Common input: Number of rounds r and output distribution parameter ε
(jointly reconstructable, possibly unknown to parties).

Private inputs: The private inputs of the parties were given to them by an
oracle computing HG(ε, m̂, t̂) as defined in Algorithm 5. The input of party
Pj for j ∈ [m̂] is (xj , dj), where

xj = (x1[j], . . . , xr[j]) and dj = (D0[j], D1[j], . . . Dr[j]) ,

where

Di[j] =
{

dJ
i [j′, j] | J ⊂ [m̂] ∧ |J | = 2h− 1 ∧ j′ ∈ J

}
, for i ∈ [r]

and
D0[j] =

{
dJ

0 [j] | J ⊂ [m̂] ∧ |J | = 2h− 1 ∧ j ∈ J
}

.

Interaction rounds: For i = 1 to r:
(a) Each party Pj sends dJ

i [j′, j] to Pj′ for every j′ ̸= j and J ⊂ [m̂] of size
2h− 1, such that j′ ∈ J .

(b) The parties reconstruct xi.

Output: The honest parties output 1 if
r∑

i=1
xi ≥ 0, and outputs 0 otherwise .

In case of abort: Let J ⊂ [m̂] be the set of remaining parties. If |J | ≥ t̂ + 1,
then the parties in J go on with the execution of the protocol. Otherwise,
they reconstruct and output dJ′

i , for the lexicographically first J ′ ⊂ [m̂] of
size 2h− 1, such that J ⊆ J ′, and for the largest i for which they have all of
the corresponding shares (for the parties of J).

. .

3.2 A Coin-Tossing Protocol for t < 3m/4

. .

25

Algorithm 7 (MultipartyShareGen<3/4)
Let r ∈ N be the number of rounds. Let m be a constant representing the number
of parties, and let t be a constant which is a bound on the number of corrupted
parties. We denote h = m − t (i.e., a lower bound on the number of honest
parties). In the following, we call a subset J ⊂ [m] protected if 2h−1 ≤ |J | ≤ t.

Input: Number of rounds r.
Selecting coins and defenses:

For i = 1 to r:
1. Sample xi ← Binr−i+1.

2. Let εi ∈
[
− 1

2 , 1
2
]

be such that B̂insi,ε

(
−

i∑
k=1

xk

)
= B̂ins0,εi

(0).

3. For every protected J ⊂ [m], sample dJ
i ← HG(εi, |J | , t−m + |J |).

Sharing the values:
1. For i ∈ [r], let xi[j] be a share of xi in a (t + 1)-out-of-m secret sharing.
2. For i ∈ [r], j ∈ [m], and a protected J ⊂ [m], let dJ

i [j] be a share of dJ
i

in a (t−m + |J |+ 1)-out-of-|J | secret sharing.
3. For i ∈ [r], j ∈ [m], a protected J ⊂ [m], and j′ ∈ J , let dJ

i [j′, j] be a
share of dJ

i [j′] in a (t+1)-out-of-m secret sharing, such that party Pj′ is
required in order to recover dJ

i [j′]. This can be done with Construction 4.
Output: Party Pj receives dJ

i [j′, j], xi[j] for every i ∈ [r], J ⊂ [m], and j′ ∈ J .
. .

We are now ready to describe the actual multiparty coin-tossing proto-
col. We remark that the protocol is defined in the fail-stop model, where
corrupted parties must follow the prescribed protocol, unless they decide to
prematurely abort the execution at some point. This is done for the sake of
simplicity of presentation and compiling the following protocols so that they
tolerate any malicious behavior is done by standard techniques, using signatures.

. .
Protocol 8 (Multiparty<3/4 Coin-Toss)

Common input: Number of rounds r.
Preprocessing: Parties run a secure with identifiable abort implementation of

Algorithm 7 to obtain their respective outputs. If an abort occurred during
the execution, then the remaining parties restart the protocol without the
aborting parties.

Interaction rounds: For i = 1 to r:
(a) Each party Pj sends dJ

i [j′, j] to Pj′ for every j′ ̸= j and every protected
J ⊂ [m] such that j′ ∈ J .

(b) The parties reconstruct xi.

Output: The honest parties output 1 if
r∑

i=1
xi ≥ 0, and outputs 0 otherwise .

26

In case of abort: Let J ⊂ [m] be the set of remaining active parties. If |J | ≥
t+1, then the parties in J continue with the execution of the protocol. Assume
that |J | ≤ t. If the abort happened before the execution of Algorithm 7, then
the parties run a secure with identifiable abort implementation of Algorithm 5
to obtain their respective outputs, and they execute Protocol 6. If the abort
happened during the interaction rounds, then the parties execute Protocol 6
with dJ′

i [j] as the private input for Pj, for the lexicographic first J ′ ⊂ [m] such
that J ⊆ J ′, and for the largest i for which they have all of the corresponding
shares.4

. .

3.3 Stating the Main Results

Theorem 9. Let m and t be two constants such that t < 3m/4. Assuming OT
exists, then for every r ∈ N, Protocol 8 is an r-round m-party O

(
22m · log3 r

r

)
-

secure coin-tossing protocol tolerating any fail-stop adversary that corrupts up
to t parties, in the

(
MultipartyShareGen<3/4, MultipartyShareGen<2/3

)
-hybrid

model (guaranteeing security with identifiable abort).

Corollary 1. Let n be the security parameter, and let m and t be two con-
stants, such that t < 3m/4. Assuming OT exists, then for every polynomial
r = r(n), there exists an r-round m-party O

(
22m · log3 r

r

)
-secure coin-tossing

protocol, against any PPT adversary corrupting up to t parties.

In order to prove Theorem 9 we first need to show that Protocol 6 is secure.
The security of Protocol 6 by itself does not suffice, as in Protocol 8 after an
abort, the adversary’s view contains some additional information, and so, the
following Lemma states that the additional information won’t help him to bias
the outcome.

Lemma 6. Let ε ∈
[
−1

2 , 1
2
]
, and let m̂ and t̂ be two constants, such that

t̂ < 2m̂/3. Then for every r ∈ N, Protocol 6 is an r-round m̂-party(
t̂, O

(
22m · log3 r

r

))
-unbiased ε-coin-toss protocol tolerating any fail-stop adver-

sary, corrupting up to t̂ parties. Moreover, the above holds even when the adver-
sary gets ε as an auxiliary input.

The proof of Lemma 6 is given in Section 3.3.2 below. We now use it in
combination with the results of [25] to prove Theorem 9.

Proof (of Theorem 9). Assume without loss of generality that r ≡ 1 mod 4
(otherwise, we set the number of rounds to be the largest r′ < r such that

4Note that in the case where |J | ≤ 2h − 1, there is an honest majority, and so,
in MultipartyShareGen<3/4 we could have given them a common bit reconstruct with
full security. We decided to instruct the parties to execute Protocol 6 for the sake of
simplicity.

27

r′ ≡ 1 mod 4). Hence, si(r) is odd, and the output of the parties in an honest
execution (without aborts) is a uniform bit. We also assume that r is larger
than some constant, which will be determined by the analysis, as otherwise the
theorem holds trivially.

Let A be a fail-stop adversary and let C ⊂ [m] be the set of parties that A
corrupts. By assumption, it holds that |C| < 3m/4. Let V be the view of the
adversary A in a random execution of Protocol 8. For a round I ∈ [r]×{(a), (b)}
in the outer protocol, let VI be the view of the adversary in round I and let
V −I be it’s view without the abort (if happened). We show that the protocol is(

t, O
(

22m · log3 r
r

))
-unbiased, i.e., we show that:

E
V

[∣∣∆ (V)−∆
(
V −
)∣∣] = O

(
22m

· log3 r

r

)
. (6)

Applying Lemma 1 to Equation (6) yields that the protocol is(
|C|, O

(
22m · log3 r

r

)
+ neg(n)

)
-secure. We next prove the correctness of

Equation (6).
We need to analyze the gain of the adversary by prematurely aborting the

execution of the protocol. Recall that to prematurely abort the execution of
the outer protocol, the adversary needs to instruct at least m− t parties to
abort. Otherwise, the remaining active parties are instructed to go on as usual,
and indeed, by the properties of the secret sharing scheme, they are able to go
through with reconstructing their appropriate secrets. Namely, upon receiving
(in Step a of round i) shares dJ

i [j, j′] from at least t parties Pj′ , party Pj is
able to reconstruct dJ

i [j] (using its own share of it). Similarly, upon receiving (in
Step b of round i) shares xi[j′] from at least t parties Pj′ , party Pj is able to
reconstruct xi.

Assume an abort occurred before the interaction rounds. Moreover, we as-
sume that at most t parties remain active. Then by the description of the proto-
col, the parties are instructed to run a secure with identifiable abort implementa-
tion of Protocol 6, and there is no bias in the samples. Then ∆(V) = ∆(V −) = 1

2 ,
which yields no advantage to the adversary.

Assume an abort occurred during the interaction rounds. Let I = (i, (·)) be
the first round for which there is an abort and there are at most t active parties
remaining. We define two adversaries A(a) and A(b) as follows: A(a) and A(b) act
exactly as does A, until round I, in which A decided to abort. If I = (i, (a)),
then A(a) aborts at (i, (a)), and A(b) completes the execution honestly without
aborting. If I = (i, (b)), then A(a) completes the execution honestly without
aborting, and A(b) aborts at (i, (b)). Let V

(a)
I and V

(b)
I be the view of A(a) and

A(b), respectively.

Assume that I = (i, (a)):
The view of the adversary A(a) consists of:

{x1, x2 . . . xi−1} and DCi ,

28

where
DCi =

{
dC

′

k : |C′ ∩ C| > t−m + |C′| ∧ k ≤ i
}

,

is the set of all the defenses that the adversary can see up to and including
round i. In addition, the adversary A(a) sees many shares that are useless
to it. Specifically, the adversary A(a) holds shares of two different types.
The first type are shares of the elements in its view that A(a) completely
reconstructed (i.e., those specified above). This type of shares are useless
to A(a), as they were chosen independently of all other information. The
second type are shares of the defense values of other sets that A(a) cannot
reconstruct (since it sees at most t such shares). This type of shares are
useless toA(a) by the properties of secret sharing schemes. We thus, disregard
these two types of shares, and continue with the analysis as if the view of
A(a) consists only of the random coins and of DCi . Formally, the view of the
adversary A(a) may contain only part of DCi , however, an adversary with
more information can always emulate one with less information by simply
disregarding parts of its view.
Each dC

′

k is a vector, which consists of O
(
r2) elements from {−1, 1},

where the elements are sampled according to Ber(εk), where εk satisfies

B̂ins0,εk
(0) = B̂insk

(
−

k∑
l=1

xl

)
. As DCi has O

(
r2) bits in total, Lemma 2

tell us that:

E
V

(a)
I

[∣∣∣∆(V
(a)

I

)
−∆

(
V

(a)−
I

)∣∣∣] = O

(
log3 r

r

)
, (7)

Assume that I = (i, (b)):
The view of the adversary A(b) consists of:

{x1, x2 . . . xi} and DCi ,

As in the previous case, we disregard the other shares that A(b) sees. Since
the defenses are sampled independently, given xi, and since the expectation
of each dC

′

i is exactly the game value given x1, . . . xi, the adversary gains
nothing by aborting in this rounds.

Combining the two cases yields the bound on the maximum bias A can do in
round I:

E
VI

[∣∣∆ (VI)−∆
(
V −I
)∣∣]

= E
V

(a)
I

[∣∣∣∆(V
(a)

I

)
−∆

(
V

(a)−
I

)∣∣∣]+ E
V

(b)
I

[∣∣∣∆(V
(b)

I

)
−∆

(
V

(b)−
I

)∣∣∣]
= O

(
log3 r

r

)
.

In order the conclude the proof of security we need to show that the remaining
corrupted parties can’t bias the outcome by more than O

(
log3 r

r

)
. Let J ⊂ [m]

29

be the set of the remaining parties , let m̂ = |J |, and let h = m − t be a lower
bound on the number of honest parties. Since, at least h parties aborted, it
follows that there are at most t̂ := m̂−h corrupted parties in J . By assumption,
t < 3m

4 , and hence, t̂ < m̂−m
4 . Since m̂ ≤ t < 3m

4 , it holds that t̂ < m̂− m̂
3 = 2m̂

3 .
Therefore by Lemma 6 it holds that:

E
Vinner

[∣∣∆ (Vinner)−∆
(
V −inner

)∣∣] = O

(
22m

· log3 r

r

)
, (8)

where Vinner is the view of A in Protocol 6, with εi included. Note that Lemma 6
assumes that the adversary’s view contains only εi as auxiliary input. However,
Equation (8) still holds, as the rest of the view is independent of VI , and give
no information to the adversary.

3.3.1 Proof of Corollary 1. We next sketch the proof of Corollary 1.

Proof Sketch of Corollary 1. We adjust Protocols 6 and 8, so that each message
that any of the parties ever needs to send is signed, and all other parties verify
this signature upon receiving this messages. If at some point in the execution,
party P broadcasts a message that is not properly signed, then, all parties treat
this as if P has aborted the computation and is no longer active. This is done
similarly to the way presented in [8]. Towards this end, Algorithm 7 is changed
so that for every round i, every two parties Pj , Pj′ , and every appropriate subset
J , both xi[j] and dJ

i [j] are signed. In addition, let σ(i, J, j′) be the signature
attributed to dJ

i [j′], then, dJ
i [j′, j] is redefined to be a share of

(
dJ

i [j′], σ(i, J, j′)
)

in a (t + 1)-out-of-m secret sharing, such that party Pj′ is required in order to
recover dJ

i [j′]. Finally, dJ
i [j′, j] is also signed.

We further modify Algorithm 7 so that for every i ∈ [r], the computation of
εi (see Item 2) can be done efficiently, similarly to the way done in [25]. Observe
that εi is only used to sample O

(
r2) independent bits, hence it can be efficiently

estimated with ε̃i, such that the statistical difference between the samples is
bounded by 1

r2 . It follows that the adjusted Protocol 8 is a r-round, m-party
O
(

22m · log3 r
r + r

r2

)
-secure coin-tossing protocol against any PPT adversary.

Finally, similarly to [8], the modified (efficient) functionality is replaced by a
secure with identifiable abort protocol that runs in a constant number of rounds.
As explained in [8], thiscan be done using (a variation on) the protocol of [33].

3.3.2 Proof of Lemma 6.

Proof (of Lemma 6). Assume without loss of generality that r ≡ 1 mod 4 (oth-
erwise, we set the number of rounds to be the largest r′ < r such that r′ ≡ 1
mod 4). We also assume that r is larger than some constant, which will be de-
termined by the analysis, as otherwise the theorem holds trivially.

Let ε ∈
[
−1

2 , 1
2
]

be the bias in the samples for which the samples in Algo-
rithm 5 are made. Let A be a fail-stop adversary and let C ⊂ [m̂] be the set of

30

parties that A corrupts. By assumption, it holds that |C| < 2m̂/3. Let V be the
view of the adversary A in a random execution of Protocol 6. We assume that V
contains ε, as any adversary with certain information, can emulate one without
it. For a round I ∈ [r] × {(a), (b)} in the protocol, let VI be the view of the
adversary in round I and let V −I be it’s view without the abort (if happened).
We show that the protocol is

(
t̂, O

(
22m · log3 r

r

))
-unbiased, i.e., we show that:

E
V

[∣∣∆ (V)−∆
(
V −
)∣∣] = O

(
22m

· log3 r

r

)
. (9)

Recall that to prematurely abort the execution of the protocol, the adversary
needs to instruct at least m̂− t̂ parties to abort. Otherwise, the remaining active
parties (there are at least t̂+1) are instructed to go on with the execution. Indeed,
by the properties of the secret sharing scheme, they are able to go through with
reconstructing their appropriate secrets.

Let I = (i, (·)) be the first round for which there is an abort and there at most
t̂ active parties. We define two adversaries A(a) and A(b) similarly to the ones
defined in the proof of Theorem 9: A(a) and A(b) behave exactly the same as A,
until round I, in which A to abort. If I = (i, (a)), then A(a) aborts at (i, (a)), and
A(b) completes the execution honestly without aborting. If I = (i, (b)), then A(a)
completes the execution honestly without aborting, and A(b) aborts at (i, (b)).
Let V

(a)
I and V

(b)
I be the view of A(a) and A(b), respectively.

Assume that I = (i, (a)):
Let h = m̂− t̂. We can assume that |ε| ≤ 2

√
log r
s0(r) . This is due to the fact that

otherwise, Hoeffding’s inequality yields that Pr
[

r∑
k=1

xk ≥ 0
]

/∈
[1

r2 , 1− 1
r2

]
,

and by Proposition 2, we get that the adversary can’t bias the outcome by
more than O

(1
r

)
. The view of the adversary A(a) consists of:

{x1, x2 . . . xi−1} , DCi , and ε,

where
DCi =

{
dC

′

k : |C′| = 2h− 1 ∧ |C′ ∩ C| ≥ h ∧ k ≤ i
}

,

the set of all the defenses that the adversary can see up to and including
round i. As in the proof of Theorem 9, we disregard additional shares that
the adversary sees, as they are useless to it in biasing the outcome. Each dC

′

k

takes the value of 1 with probability

P
(

w
(

SC
′
)

, k
)

= ĤG2s0,w(SC′),sk

(
−

k∑
l=1

xl

)
, (10)

and 0 otherwise . Recall that for a set S ∈ {−1, 1}n we denote by w (S) be
the sum of its members, and the term ĤGn,w(S),m(k) denotes the probability
that the sum over a random subset S′ ⊆ S of size m is at least k.

31

Since we assume that |ε| ≤ 2
√

log r
s0

, by Hoeffding’s inequality, we get that
for a single set C′ ⊂ [m̂] of size 2h− 1, it holds that for large enough r’s:

Pr
[∣∣∣w (SC

′
)∣∣∣ > 12

√
log r · s0

]
≤ Pr

[∣∣∣w (SC
′
)
− 4ε · s0

∣∣∣ > 4
√

log r · s0

]
≤ 1

2m̂ · r2 .

Therefore, by the union bound we get:

Pr
[
∀C′ ⊂ [m̂], |C′| = 2h− 1 :

∣∣∣w (SC
′
)∣∣∣ ≤ 12

√
log r · s0

]
≥ 1− 1

r2 .

Hence, we can assume that for every C′ ⊂ [m̂] of size 2h − 1 it holds that∣∣∣w(SC′)
∣∣∣ ≤ 12

√
log r · s0.

Let C′ ⊂ [m̂] be such that |C′| = 2h − 1 and has a majority of corrupted
parties. We are interested in analyzing the advantage gained by A in seeing
the defense value attributed to C′ at round i. Denote this defense value by
dC

′

i (we stress that defense values dC
′

k for k < i will not play any role here, as
will become clear from the analysis). By construction, dC

′

i is sampled from
P
(

w
(

SC
′
)

, i
)

. As there are 2m subsets of parties, by Lemma 5 it holds
that

E
V

(a)
I

[∣∣∣∆(V
(a)

I

)
−∆

(
V

(a)−
I

)∣∣∣] = O

(
22m

· log3 r

r

)
.

Assume that I = (i, (b)):
The view of the adversary consists of:

{x1, x2 . . . xi} , DCi and ε.

Again, we can disregard additional shares in the view of the adversary. Since
the defenses are sampled independently, given xi and ε, and since the ex-
pectation of each dC

′

i is exactly the game value given x1, . . . xi and ε, the
adversary gains nothing by aborting in this rounds.

As described in the protocol, the remaining parties now reconstruct their last
common defense, for which they have received all of the shares in the outer layer
of the secret sharing scheme. If more parties abort, then the remaining parties
can still reconstruct a bit that was sampled with the exact same distribution.
Hence the adversary gains nothing. In total we get that:

E
VI

[∣∣∆ (VI)−∆
(
V −I
)∣∣] (11)

= E
V

(a)
I

[∣∣∣∆(V
(a)

I

)
−∆

(
V

(a)−
I

)∣∣∣]+ E
V

(b)
I

[∣∣∣∆(V
(b)

I

)
−∆

(
V

(b)−
I

)∣∣∣]
= O

(
22m

· log3 r

r

)
.

Acknowledgements
We are grateful to Iftach Haitner and Amos Beimel for useful conversations.

32

Bibliography

[1] B. Alon and E. Omri. Almost-optimally fair multiparty coin-tossing with
nearly three-quarters malicious. In Proc. of the Fourteenth Theory of Cryp-
tography Conference – TCC 2016-B, 2016. To appear.

[2] G. Asharov. Towards characterizing complete fairness in secure two-party
computation. In Proc. of the Eleventh Theory of Cryptography Conference
– TCC 2014, volume 8349, pages 291–316. Springer, 2014.

[3] G. Asharov, Y. Lindell, and T. Rabin. A full characterization of functions
that imply fair coin tossing and ramifications to fairness. In Proc. of the
Tenth Theory of Cryptography Conference – TCC 2013, volume 7785 of
Lecture Notes in Computer Science, pages 243–262. Springer, 2013.

[4] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete character-
ization of fairness in secure two-party computation of boolean functions. In
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC
2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 199–
228, 2015.

[5] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In Theory of cryptography, pages 137–156.
Springer, 2007.

[6] B. Averbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to
implement Bracha’s O(log n) Byzantine agreement algorithm, 1985. Un-
published manuscript.

[7] A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-secure multiparty compu-
tation without honest majority and the best of both worlds. In P. Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 277–296. Springer, 2011.

[8] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with
dishonest majority. J. Cryptology, 28(3):551–600, 2015. Conference version
in: T. Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 538-557. Springer-Verlag, 2010.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In Proceedings of the 29th Annual Symposium on Foundations of
Computer Science (FOCS), pages 1–10, 1988.

[10] Berman, I. Haitner, and A. Tentes. Coin flipping of any constant bias
implies one-way functions. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 398–407, 2014.

[11] M. Blum. Coin flipping by telephone. In Advances in Cryptology – CRYPTO
’81, pages 11–15, 1981.

[12] M. Blum. Coin flipping by telephone a protocol for solving impossible
problems. SIGACT News, 15(1):23–27, 1983.

[13] R. Canetti. Security and composition of multiparty cryptographic protocols.
Journal of CRYPTOLOGY, 13(1):143–202, 2000.

[14] R. Cleve. Limits on the security of coin flips when half the processors are
faulty. In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), pages 364–369, 1986.

[15] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and dis-
crete control processes. Manuscript, 1993.

[16] D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-
box complexity of optimally-fair coin tossing. In Theory of Cryptography,
Eighth Theory of Cryptography Conference, TCC 2011, volume 6597, pages
450–467, 2011.

[17] D. Dachman-Soled, M. Mahmoody, and T. Malkin. Can optimally-fair
coin tossing be based on one-way functions? In Theory of Cryptography
- 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA,
USA, February 24-26, 2014. Proceedings, pages 217–239, 2014.

[18] O. Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

[19] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In stoc19,
pages 218–229, 1987.

[20] S. Goldwasser and Y. Lindell. Secure computation without agreement. In
Distributed Computing, pages 17–32. Springer, 2002.

[21] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation.
In H. Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 157–176. Springer, 2010.

[22] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation.
Journal of Cryptology, 25(1):14–40, 2012.

[23] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure
two-party computation. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC), pages 413–422, 2008.

[24] I. Haitner and E. Omri. Coin Flipping with Constant Bias Implies One-Way
Functions. In Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 110–119, 2011.

[25] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping
protocol. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 408–416, 2014. URL http://www.
cs.tau.ac.il/˜iftachh/papers/3PartyCF/QuasiOptimalCF_Full.pdf.

[26] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically
hiding commitments and statistical zero-knowledge arguments from any
one-way function. SIAM Journal on Computing, 39(3):1153–1218, 2009.

[27] Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with
identifiable abort. In Advances in Cryptology - CRYPTO 2014 - 34th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II, pages 369–386, 2014.

[28] J. Katz. On achieving the “best of both worlds” in secure multiparty com-
putation. In STOC07, pages 11–20, 2007.

[29] H. K. Maji, M. Prabhakaran, and A. Sahai. On the Computational Com-
plexity of Coin Flipping. In Proceedings of the 51st Annual Symposium on
Foundations of Computer Science (FOCS), pages 613–622, 2010.

34

http://www.cs.tau.ac.il/~iftachh/papers/3PartyCF/QuasiOptimalCF_Full.pdf
http://www.cs.tau.ac.il/~iftachh/papers/3PartyCF/QuasiOptimalCF_Full.pdf

[30] N. Makriyannis. On the classification of finite boolean functions up to
fairness. In Security and Cryptography for Networks – 9th International
Conference, SCN 2014, volume 8642 of Lecture Notes in Computer Science,
pages 135–154. Springer, 2014.

[31] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Theory of
Cryptography, Sixth Theory of Cryptography Conference, TCC 2009, pages
1–18, 2009.

[32] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991. Preliminary version in CRYPTO’89.

[33] R. Pass. Bounded-concurrent secure multi-party computation with a dis-
honest majority. In Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC), pages 232–241, 2004.

[34] A. Shamir. How to share a secret. Communications of the ACM, 22(11):
612–613, 1979.

35

	Almost-Optimally Fair Multiparty Coin-Tossing with Nearly Three-Quarters Malicious

