
Tighter Bounds on Multi-Party Coin Flipping via

Augmented Weak Martingales and Differentially Private Sampling

Amos Beimel∗ Iftach Haitner†‡ Nikolaos Makriyannis§‡ Eran Omri¶

April 5, 2018

Abstract

In his seminal work, Cleve [STOC ’86] has proved that any r-round coin-flipping protocol
can be efficiently biased by Θ(1/r). This lower bound was met for the two-party case by
Moran, Naor, and Segev [Journal of Cryptology ’16], and the three-party case (up to a polylog
factor) by Haitner and Tsfadia [SICOMP ’17], and was approached for n-party protocols when
n < loglog r by Buchbinder, Haitner, Levi, and Tsfadia [SODA ’17]. For n > loglog r, however,
the best bias for n-party coin-flipping protocols remains O(n/

√
r) achieved by the majority

protocol of Awerbuch, Blum, Chor, Goldwasser, and Micali [Manuscript ’85].
Our main result is a tighter lower bound on the bias of coin-flipping protocols, showing that,

for every constant ε > 0, an rε-party r-round coin-flipping protocol can be efficiently biased by
Ω̃(1/

√
r). As far as we know, this is the first improvement of Cleve’s bound, and is only n = rε

(multiplicative) far from the aforementioned upper bound of Awerbuch et al.
We prove the above bound using two new results that we believe are of independent interest.

The first result is that a sequence of (“augmented”) weak martingales have large gap: with
constant probability there exists two adjacent variables whose gap is at least the ratio between
the gap between the first and last variables and the square root of the number of variables.
This generalizes over the result of Cleve and Impagliazzo [Manuscript ’93], who showed that the
above holds for strong martingales, and allows in some setting to exploit this gap by efficient
algorithms. We prove the above using a novel argument that does not follow the more compli-
cated approach of [12]. The second result is a new sampling algorithm that uses a differentially
private mechanism to minimize the effect of data divergence.

Keywords: multi-party computation; coin-flipping; augmented weak martingales; differential pri-
vacy; oblivious sampling;

∗Department of Computer Science, Ben Gurion University. E-mail: amos.beimel@gmail.com. Research supported
by ISF grant 152/17.
†School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il. Member of the Israeli Center

of Research Excellence in Algorithms (ICORE) and the Check Point Institute for Information Security.
‡Research supported by ERC starting grant 638121.
§School of Computer Science, Tel Aviv University. E-mail: n.makriyannis@gmail.com.
¶Department of Computer Science, Ariel University. E-mail: omrier@ariel.ac.il. Research supported by ISF

grant 152/17.

1

1 Introduction

In a coin-flipping protocol, introduced by Blum [9], the parties wish to output a common (close to)
unbiased bit, even though some of the parties may be corrupted and try to bias the output. More
formally, such protocols should satisfy the following two properties: first, when all parties are honest
(i.e., follow the prescribed protocol), they all output the same unbiased bit. Second, even when
some parties are corrupted (i.e., collude and arbitrarily deviate from the protocol), the remaining
parties should still output the same bit, and this bit should not be too biased (i.e., its distribution
should be close to being uniform over {0, 1}). We emphasize that the above requirements stipulate
that the honest parties should always output a common bit, regardless of what the corrupted
parties do, and in particular they are not allowed to abort if a cheat was detected.1 Coin flipping
is a fundamental primitive with numerous applications, and thus lower bounds on coin flipping
protocols imply analogous bounds on many other basic cryptographic primitives, including other
inputless primitives and secure computation of functions that have input (e.g., XOR).

In his seminal work, Cleve [11] showed that for any efficient two-party r-round coin-flipping
protocol, there exists an efficient adversarial strategy that biases the output of the honest party
by Θ(1/r), and his bound extends to the multi-party case with no honest majority, via a simple
reduction. The above lower bound on coin-flipping protocols was met for the two-party case by
Moran, Naor, and Segev [30] and for the three-party case (up to a polylog factor) by Haitner
and Tsfadia [25], and was approached for n-party coin-flipping protocols when n < loglog r by
Buchbinder, Haitner, Levi, and Tsfadia [10]. For n > loglog r, however, the smallest bias for
n-party coin-flipping protocol remains Θ(n/

√
r), achieved by the majority protocol of Awerbuch,

Blum, Chor, Goldwasser, and Micali [5].

1.1 Our Results

Our main result is the following lower bound on the security of coin-flipping protocols.

Theorem 1.1 (Main result, informal). For any n-party r-round coin-flipping protocol with nk ≥ r
for some k ∈ N, there exists a fail-stop2 adversary running in time nk, corrupting all parties but
one, that biases the output of honest party by 1/(

√
r · log(r)k).

As a concrete example, assume the number of parties is n = r1/100. The above theorem yields
an attack of bias Ω̃(1/

√
r) = Ω̃(1/r0.5), to be compared to the n/

√
r = 1/r0.49 upper bound of

Awerbuch et al. [5]. As far as we know, Theorem 1.1 is the first improvement over the Ω(1/r)
bound of Cleve [11].

Theorem 1.1 is only applicable when the adversary is able to corrupt all parties but one. How-
ever, by grouping parties together, we note that any n-party protocol is a bn/sc-party protocol, for
any s < n, and thus the following theorem dealing with more versatile corruption strategies follows
by simple reduction.

Theorem 1.2 (Main result, fewer corruptions variant, informal). For n-party r-round coin-flipping
protocol with (n/s)k ≥ r for some s < n/2 and k ∈ N, there exists an adversary running in time
(n/s)k, corrupting all parties but a subset of size s, that biases the output of honest parties by
1/(
√
r · log(r)k).

1Such protocols are typically addressed as having guaranteed output delivery, or, abusing terminology, as fair.
2Acts honestly, but might abort prematurely.

2

For instance, if nk > r, by corrupting all parties but a subset of size n1/2, the adversary achieves
a bias of 1/(

√
r · log(r)2k). That is, up to a factor of 1/ log(r)k in the bias, we derive the same

result as Theorem 1.1, but with fewer corrupted parties (only all parties but a subset of size n1/2

instead of all parties but one).
We prove the above theorems using the following two results that we believe to be of independent

interest.

1.1.1 Augmented Weak Martingales have Large Gap

A sequence X1, . . . , Xr of random variables is a (strong) martingale, if E [Xi | X≤i−1] = Xi−1 for
every i ∈ [r] (letting X≤j = (X1, . . . , Xj)). Cleve and Impagliazzo [12] showed that any strong
martingale sequence with X1 = 1

2 and Xr ∈ {0, 1} has a 1/
√
r gap with constant probability: with

constant probability, |Xi −Xi−1| ≥ Ω(1/
√
r) for some i ∈ [r]. This result is the core of their proof

showing that there exists an inefficient (fail-stop) attack for any coin-flipping protocol that yields a
bias of order 1/

√
r (see Section 1.2). The result of [12] is used with respect to the Doob martingale

sequence defined by Xi = E [f(Z) | Z≤i], for random variables Z = (Z1, . . . , Zr) and a function f
of interest. To be applicable in a computational setting, we require that Xi = E [f(Z) | Z≤i] is
an efficiently computable function of Z≤i. In many cases however, including the one considered by
[12], Supp(Z≤i) is huge, resulting in Xi not being efficiently computable.

Weak martingales, introduced by Nelson [31], is a relaxation of strong martingales where it
is only required that E [Xi | Xi−1] = Xi−1. Namely, the conditioning is only on the value of
the preceding variable, and not on the whole “history”. As in the case of (strong) martingales,
for arbitrary Z = (Z1, . . . , Zr) and a function f of interest, we can consider the Doob-like se-
quence Xi = E [f(Z) | Zi, Xi−1]. The support size of the function for computing Xi is only of
size |Supp(Zi)× Supp(Xi−1)|, and we can use discretization to further reduce the support size of
Xi (i.e., we let Xi be a rounding of E [f(Z) | Zi, Xi−1]). Hence, if the support of Zi is small, the
computation of the Xi’s can be done efficiently. (Discretization is not useful for the (strong) Doob
martingale described above, since, even if the support of each individual Z1 is small, even 2, the
domain of Z1, . . . , Zr is typically huge). Unfortunately, it is unclear whether weak martingales have
large gaps, and thus we are unable to apply the attack of Cleve and Impagliazzo [12] using such a
sequence.

We prove that a slightly different variant of the Doob construction results in a sequence that is
efficiently computable and has a large gap, at the same time. A sequence X1, . . . , Xr of random vari-

ables is a sum-of-squares-augmented weak martingales, if E
[
Xi | Xi−1,

∑
j∈[i−1](Xj −Xj−1)2

]
=

Xi−1. Namely, X has the “martingale property” when conditioning on some small amount of
information about the past. For such a sequence, we prove the following result:

Theorem 1.3 (Informal). Let X1, . . . , Xr be a sequence of sum-of-squares-augmented weak mar-
tingale with X = 1/2 and Xr ∈ {0, 1}, then

Pr
[
∃i ∈ [r] : |Xi −Xi−1| ≥ 1/

√
r
]
∈ Ω(1).

We prove that the above holds for a rounded variant of Xi, i.e., Xi are rounded to the closest
multiplicative of some δ > 0.

Consider the sequence of sum-of-squares-augmented weak martingales defined by the Doob-like

sequence Xi = E
[
f(Z) | Zi, Xi−1,

∑
j∈[i−1](Xj −Xj−1)2

]
, for arbitrary Z = (Z1, . . . , Zr) and a

3

function f of interest. If the support of the Zi’s small, the computation of the (rounding of) Xi’s
can be done efficiently. This efficiency plays a critical role in our attack on coin-flipping protocols,
allowing us, in some cases, to mount an efficient variant of the attack of [12].

Our proof actually yields the following stronger statement.

Theorem 1.4 (Informal). Let X1, . . . , Xr be a sequence of sum-of-squares-augmented weak mar-
tingales with X = 1/2 and Xr ∈ {0, 1}, then

Pr
[∑
i∈[r]

(Xi −Xi−1)2 ≥ 1
]
∈ Ω(1).

Namely, the sum-of-squares is constant with constant probability. In particular, the probability
that |Xi −Xi−1| ≥ 1/

√
r , for some i, is also constant, implying Theorem 1.3. But Theorem 1.4

yields a stronger result: if we are guaranteed that all gaps are at most 1/
√
r (i.e., |Xi −Xi−1| ∈

O(1/
√
r) for all i), then Theorem 1.4 implies that, with constant probability, the sequence has a

linear number of 1/
√
r-gaps (as opposed to only one such gap guaranteed by [12]).

Our proof for Theorem 1.4 is surprisingly simple, and does not follow the more complicated
approach of Cleve and Impagliazzo [12].3

1.1.2 Oblivious Sampling via Differential Privacy

Consider the following r-round game in which the goal is to maximize the revenue of the chosen
party: in the beginning, a party H is drawn uniformly from H (for H being a finite set of parties).
In each round i, values

{
shi ∈ [0, 1]

}
h∈H are assigned to the parties of H, and the values of all

parties but H, i.e.,
{
shi
}
h∈H\{H}, are published. Seeing the published values, you can either decide

to abort, and then party H is rewarded with (the unseen) value sHi , or to continue to the next
round. If you never choose to abort, then party H is rewarded with sHr (the value of the last
round). Your goal is to get a reward as close to the optimal value γ = maxi

{
si := Eh←H

[
shi
]}

. To
make the game reasonable, it is guaranteed that the values assigned to the parties in each round
are similar :

∣∣shi − si∣∣ ≤ σ for every h ∈ H. Namely, the individual values are σ-close to the mean.
We will be interested in a distributional variant of the above game in which the values of

{
shi
}

are not fixed, but rather drawn from some underlying distribution (in our setting, the values of{
shi
}

will be induced by the randomness of the attacked coin-flipping protocol), while satisfying the
above guarantees with regards to γ and σ with good enough probability. We refer to the resulting
game as an oblivious sampling game with parameters r, |H|, γ, and σ. An aborting strategy for the
above game can only depend on the game parameters (i.e., r, |H| , γ, σ) and the values published
online.

The simplest aborting strategy for such a game is to abort if the average of all other parties, i.e.,
{sh}h∈H\{H}, is larger than (roughly) γ−σ. The reward of such a strategy is roughly γ−σ, which
is useless if σ ≥ γ. As we show next, this linear loss in σ is inherent for this strategy; consider

a deterministic threshold strategy that aborts if s
\h
i = Eh′←H\h

[
sh
′
i

]
≥ tsh for some threshold

tsh ∈ [0, γ]. Namely, an aborts occurs if the average value at hand in a given round is greater than
tsh. Consider the game defined by H = [r − 1], shr = γ for all h, and for i ∈ [r − 1]: shi = tsh− σ if

3To be fair, Cleve and Impagliazzo [12] derive their result by proving an Azuma-like tail inequality for bounded
strong martingales that have large gap with only small probability, a bound that we do not prove here.

4

i = h, and tsh otherwise. It follows that for every value of h, the strategy seeing the values of
{
s
\h
i

}
aborts at round h, and gets reward tsh− γ. Hence, the reward of this strategy is tsh− σ ≤ γ − σ.

We show that using a differentially private mechanism, and in particular adding Laplace noise

to the estimated revenue s
\h
i = Eh′←H\h

[
sh
′
i

]
, significantly improves upon the above deterministic

strategy. By introducing such noise, the aborting decision is less correlated to the choice of the
random party H. More accurately, the value of H is σ-differentially private, according to the
definition of Dwork, McSherry, Nissim, and Smith [19], from the aborting decision, and thus we
avoid the pitfalls caused by strong correlation between H and the aborting round, as illustrated by
the above example for the deterministic threshold strategy. We exploit this “privacy” guarantee to
prove the following improvement in the expected reward.

Theorem 1.5 (Informal). For every oblivious sampling game, the randomized strategy that adds

Laplace noise in every round (whose magnitude depends on the game parameters) to s
\h
i , and aborts

if the result is greater than γ/2, achieves expected reward γ/2− σ2.

Namely, the penalty for having imperfect similarity is reduced from σ to γ/2 + σ2, a significant
improvement when γ < σ < 1. We also prove a generalization of the above theorem where each
party has a different similarity guarantee.

1.2 Our Techniques

Below, we describe the approach for proving Theorem 1.1 using Theorems 1.3 and 1.5. We do
not discuss here the proofs of these theorems, but we do explain in Section 1.2.5 why the weak
martingale used by the attack is computable by an efficient uniform algorithm.

Let Π be an r-round n-party coin-flipping protocol and let out denote the (always common)
output of the parties in a random honest execution. By definition, out ∈ {0, 1} and E [out] = 1/2.
Our goal is to obtain an efficient attacker that, by controlling n−1 of the parties, biases the honest
parties’ output by 1/

√
r (we ignore log factors). We start by describing the 1/

√
r inefficient attack

of Cleve and Impagliazzo [12].

1.2.1 Cleve and Impagliazzo’s Inefficient Attack

Let n = 2 and let (P0,P1) be the parties of Π. Let T1, . . . , Tr denote the messages in a random
execution of Π. Let Xi = E [out | T≤i]; namely, Xi is the expected outcome of the protocol given
the first i messages T≤i = T1, . . . , Ti. It is easy to see that X1, . . . , Xr is a (strong) martingale
sequence. Hence, the result of [12] described in Section 1.1.1 yields that (omitting absolute values
and constant factors)

Jump: Pr
[
∃i ∈ [r] : Xi −Xi−1 ≥ 1/

√
r
]
∈ Ω(1). (1)

Backup values. For b ∈ {0, 1}, let the backup value Zbi denote the output of party Pb if party
P1−b aborts after the ith message was sent, letting Zbr be the final output of Pb (if no abort occurs).
Using this notation, E

[
Zbi | T≤i

]
is the expected outcome of Pb if P1−b aborts after the ith round.

We can assume without loss of generality that

Backup value follows game value: Pr
[
∃i ∈ [r] :

∣∣∣Xi −E
[
Zbi | T≤i

]∣∣∣ ≥ 1/
√
r
]
∈ o(1). (2)

5

for both b ∈ {0, 1}. Otherwise, the attacker controlling P1−b that computes Xi and E
[
Zbi | T≤i

]
for

each round i, and aborts if Xi −E
[
Zbi | T≤i

]
≥ 1/

√
r, would bias Pb’s output towards 0 by 1/

√
r.4

The martingale attack. The above two observations yield the following attack. From Equa-
tions (1) and (2), it follows that without loss of generality

Attack slot: Pr
[
∃i ∈ [r] : Pb sends the ith message ∧Xi −E

[
Z1−b
i−1 | T≤i

]
≥ 1/2

√
r
]
∈ Ω(1). (3)

This yields the following attack for party Pb to bias the output of party P1−b towards zero. Before

sending the ith message Ti, party Pb aborts if Xi − E
[
Z1−b
i−1 | T≤i

]
≥ 1/2

√
r. By Equation (3),

under this attack, the output of P1−b is biased towards zero by Ω(1/
√
r).5

The clear limitation of the above attack is that, in many cases, the values of both Xi =

E [out | T≤i] and E
[
Z1−b
i | T≤i

]
are not efficiently computable (given T≤i). Indeed (assuming the

existence of oblivious transfer), the above Θ(1/
√
r) lower bound does not hold for n < loglog r

[10, 25, 30].

1.2.2 Towards an Efficient Attack via Augmented Weak Martingales

The first step towards making the above attack efficient is not to define the Xi’s as a function of the
transcript. Indeed, even given the first message T1, computing E [out | T1] might involve inverting
a one-way function. Our solution is to define Xb

i = E
[
out | Zb≤i

]
; namely, the expected outcome

given Pb’s backup values. The immediate advantage is that the backup values are only bits. Thus,
Xb

1 has only two possible values, and computing it from Z1 can be done efficiently. Yet, for large
values of i, the computation of Xb

i (depending on Zb1, . . . , Z
b
i) might still be infeasible.

Thankfully, our new result for sum-of-squares-augmented weak martingales (Theorem 1.3)
circumvents this problem. Let f(Zb1, . . . , Z

b
r) = E

[
out | Zb≤r

]
. By definition, it holds that

f(Zb1, . . . , Z
b
r) = Zbr ∈ {0, 1}, and thus E

[
f(Zb1, . . . , Z

b
r)
]

= 1/2. Theorem 1.3 yields that for the

Doob-like sequence Xb
i = E

[
out | Zbi , Xb

i−1,
∑

j∈[i−1](X
b
j −Xb

j−1)2
]
, it holds that (again, omitting

absolute values and constant factors)

Jump: Pr
[
∃i ∈ [r] : Xb

i −Xb
i−1 ≥ 1/

√
r
]
∈ Ω(1). (4)

Using a rounded variant of the Xb
i ’s, the value of Xb

i is only a function of
∣∣Supp(Zbi)

∣∣ ·r2 ∈ O(r3)
bits, and thus can be computed efficiently. Namely, the martingale attack of [12] (i.e., aborting in
the event of an observed gap) with respect to this definition of Xi is now efficient. Similarly to [12],
we obtain an Ω(1/

√
r) attack if

Attack slot: Pr

∃i ∈ [r] : Xb
i −E

Z1−b
i−1 | Z

b
i , X

b
i−1,

∑
j≤i−1

(Xb
j −Xb

j−1)2

 ≥ 1/2
√
r

 ∈ Ω(1). (5)

4To be more precise, at least one of two attacks would succeed, depending on the aimed direction of the bias.
5In more detail, assume for simplicity that P0 sends the messages T1, T3, . . . and P1 sends the messages T2, T4,

For at least one party Pb, Equation (3) holds when limiting i to be a round where Pb is supposed to send the ith

message. The above attack is effective when executed by the relevant party.

6

The coin-flipping protocols of [10, 25, 30] show that the equation above does not hold in general.
Nevertheless, we show that (for a suitable variant of) the above inequality does hold for the case
n ≥ r, and thus the “martingale” attack achieves the desired bias for this case. The case nk ≥ r
for k ≥ 2 is significantly more complex, but follows the same principle. Details below.

1.2.3 An Efficient Attack for n = r

Let (P1, . . . ,Pn) be the parties of Π. For b ∈ [n], let Zbi ∈ {0, 1} be the output (backup value)
party Pb outputs if all other parties abort right after the ith round, and for S ⊆ [n] let ZSi =
1
|S| ·

∑
s∈S Z

s
i . For a subset S ⊆ [n], consider the sequence of augmented weak martingales XSi =

E
[
out | ZSi , XSi−1,

∑
j∈[i−1](X

S
j −XSj−1)2

]
. As before, with constant probability XSi −XSi−1 ≥ 1/

√
r

for some i ∈ [r]. Hence, without loss of generality,

Jump: Pr
[
∃i ∈ [r] : XSi − ZSi−1 ≥ 1/2

√
r
]
∈ Ω(1). (6)

A crucial observation, and the reason why considering a number of parties that is linear in the
round complexity is rewarding, is that, with high probability over the choice of S of size n/2, it
holds that

Similar backup values: ∀i ∈ [r] : ZSi = ZSi ± 1/3
√
r. (7)

Namely, ZSi is a good estimation for ZSi , for all rounds i ∈ [r] simultaneously.6

Indeed, since S is chosen at random, ZSi (= 1
|S| ·

∑
s∈S Z

s
i) is a 1/3

√
r approximation of Z

[n]
i

and thus of ZSi . Fix such a good set S. The following martingale attack biases the output of a
random party Ph not in S (i.e., h ← S) towards zero. In the ith round, the attacker aborts all
parties but Ph if XSi − ZSi−1 ≥ 1/6

√
r. Equations (6) and (7) implies that the above adversary

biases the output of Ph towards zero by Ω(1/
√
r).

1.2.4 An Efficient Attack for nk ≥ r via Differentially Private Sampling

We describe the attack for n2 ≥ r, and then briefly highlight the extension for k ≥ 3.
A critical part of the above attack for n = r (stated in (7)) is that for a random (and thus for

some) subset S ⊆ [n] of size n/2, it holds that ZSi is at most O(1/
√
r)-far from ZSi . This is not the

case for n2 = r, where we are only guaranteed that ZSi is at most O(1/
√
n) = O(1/ 4

√
r)-far from

ZSi , a too-rough approximation for our needs, since the error is larger than the potential gain of
O(1/

√
r)).

Our solution is to consider the joint backup values for pairs of parties. That is, the joint output
of such a pair given that all other parties abort. Considering the pairs’ backup values, however,
raises a different problem. The adversary can no longer examine the values of a random large
subset P (

(
[n]
2

)
of backup values, as we described in the case n = r, since each party in [n] (and, in

particular, the honest party) takes part in Θ(1/n) fraction of P, with high probability. Rather, we
let the attacker examine the backup values of the pairs

(S
2

)
, for some subset S ([n]. If (the average

of) these backup values are a good approximation for the backup value of pairs that contain the
honest party, then the previous aborting strategy results in a bias of suitable magnitude. If not,

6Actually, this requires n = r log r, but we ignore such log factors in this informal discussion.

7

then we can employ a different type of attack using differentially private sampling (Theorem 1.5).
More details follow.

For a pair p = (j1, j2) ∈
(

[n]
2

)
, let Zpi ∈ {0, 1} be the joint output (backup value) of

the parties Pj1 and Pj2 , if all parties but them abort right after the ith round. For P ⊆(
n
2

)
, let ZPi = 1

|P| ·
∑

p∈P Z
p
i . Consider the sequence of augmented weak martingales XSi =

E

[
out | Z(S2)

i , XSi−1,
∑

j∈[i−1](X
S
j −XSj−1)2

]
, for some subset S ⊆ [n]. As before, with constant

probability XSi+1 −XSi ≥ 1/
√
r for some i. Assuming that

Similar backup values: Z
(S2)
i = ZS×Si ± o(1/

√
r), (8)

for every i. Namely, the average backup values of pairs of parties seen by an attacker controlling
all parties in S, is very close to the average of the backup values of pairs containing one party in
S and one party not in S. Similarly to the case n = r, the above assumption enables the following
martingale attack biasing the output of a random party Ph not in S (i.e., h← S) towards zero by
Ω(1/

√
r). In the ith round, if XSi −XSi−1 > 1/2

√
r the attacker aborts all parties but (Ph,Ps), for

a random s← S.
Unlike the case n = r, Equation (8) might be false (for any set S). Fortunately, if this happens,

we can mount a different attack, described below.

The differentially private sampling attack. Assume for simplicity that

Non-similar backup values: Pr

[
∃i ∈ [r] : Z

(S2)
i − ZS×Si > 1/

√
r

]
∈ Ω(1). (9)

This calls for the following attack biasing the output of a random honest party Ph, for h ← S,
towards zero. For a pair-subset P ⊆

(
[n]
2

)
, let P \ h stand for all pairs in P that do not include h.

In the ith round, the attacker checks whether G
\h
i = Z

(S2)\h
i − Z(S×S)\h

i > 1/2
√
r. If so, it aborts

all parties but (Ph,Ps) for a random s← S. The attack performs well if the backup values of the
corrupted parties are a good approximation of the expected value of the honest party output. In
particular, if for every h and i:

Strong gap similarity: G
\h
i = Ghi ± o(1/

√
r), (10)

for Ghi = Z
{h}×(S\{h})
i −Z{h}×Si . Unfortunately, Equation (10) might be false, without yielding any

useful consequences. Rather, we can only assume the weaker guarantee that

Weak gap similarity: G
\h
i = Ghi ± o(1/

√
n) = Ghi ± o(1/ 4

√
r), (11)

for every h and i. Indeed, if Equation (11) does not hold, then (w.l.o.g) for some party h′ ∈ S it

holds that Z
{h}×S
i 6= Z

{h′}×S
i ±Θ(1/ 4

√
r). That is, when restricting our attention to the n− 1 pairs

containing h′, the gap is Θ(1/
√
n). Such gap yields that an attack in the spirit of the one used for

the n = r case induces a large bias on an honest party chosen randomly from S.
The guarantee of Equation (11) does not suffice for the simple attack described below Equa-

tion (9) to go through. Roughly, the reason is that the approximation error (i.e., o(1/ 4
√
r)) is larger

8

than the expected gain of Ω(1/
√
r). Indeed, we find ourselves in the setting of the oblivious sam-

pling game considered in Section 1.1.2, letting γ = 1/
√
r, shi = Ghi and si = Gi = Eh←H

[
shi
]
, and

σ =
∣∣si − shi ∣∣ ∈ o(1/ 4

√
r) > 1/

√
r. As explained in Section 1.1.2, a threshold deterministic attack

for this sampling game, i.e. seeing the values of
{
shi
}
i∈[r]

one by one, until one decides to abort,

might achieve no reward for random h, and neither for any fixed h. In particular, it might hold
that shi = 0 for i being the aborting round.

Fortunately, since we are in the setting of the oblivious sampling game, Theorem 1.5 yields
that randomized aborting online strategy that adds noise to its halting decision, in every round,

performs significantly better. Specifically, the strategy that adds the right Laplace noise to s
\h
i =

Eh′←H\h

[
sh
′
i

]
, and aborts if the result is greater than γ/2, achieves expected revenue γ/2− σ2 =

1/2
√
r − o(1/ 4

√
r)2 > 1/4

√
r. The above holds for a random h, and thus for some fixed h as well.

It follows that the induced attacker on the protocol, controlling all parties by Ph, and applying the

same randomized aborting strategy, obtains Z
{h}×(S\{h})
i − Z{h}×Si ≥ 1/4

√
r where i denotes the

aborting round. This translates, using the same means as in the deterministic threshold attack for
choosing the non aborting pair, into a 1/4

√
r-bias of Ph’s output.

Intuitively, the point of using the differentially private sampling mechanism is to avoid identi-
fying the choice of honest party. That is, the effect of the back-up values of pairs containing any
single party on the adversary’s decision to trigger the attack is diminished (Equation (11) keeps
the sensitivity of this decision small).

The case nk ≥ r for k ≥ 3. To begin, assume that k = 3 (i.e., n3 ≥ r). For such value
of n, it holds that 1/

√
n = 1/ 6

√
r � 1/ 4

√
r. Thus, the promise Gi = Ghi ± o(1/

√
n) does not

suffice for the differentially private based attack to go through. Rather, we need to assume that
Gi = Ghi ± o(1/ 4

√
r) = Ghi ± o(1/n3/4). We show that if the latter does not hold, the attacker can

fix a party and never abort it (i.e., we restrict the subset of all backup values to those containing
this party) we are essentially in the setting of n2 ≥ r. Namely, either we have differentially private
based attack, or we have a martingale attack (both with respect to the above fixing of a never
aborting party).

For larger values of k, we iterate the above, fixing non-aborting parties one after the other, until
one of the differentially private based attacks or the martingale attack go through.

1.2.5 Computing Doob-like Weak Martingales

In Section 1.1.1, we claimed that if the support size of the Zi’s is small, then the sum-
of-squares-augmented weak martingales X1, . . . , Xr defined by the rounded Doob-like sequence

Xi = rnd(E
[
f(Z) | Zi, Xi−1,

∑
j∈[i−1](Xj −Xj−1)2

]
) can be efficiently computable, where rnd is a

small support rounding function. We use this guarantee above to argue that our attack is efficient.
While this claim trivially holds when considering non-uniform algorithms, the argument for uni-
form algorithms is more subtle, and since we believe it to be of independent interest, we highlight
it below.

For simplicity, we focus on the weak martingales defined by the Doob-like sequence Xi =
rnd(E [f(Z) | Zi, Xi−1]). Consider the mappings χ1, . . . , χr inductively defined by χi(z) =
rnd(E [f(Z) | Zi = zi, Xi−1 = χi−1(z)]). It is easy to verify that Xi = χi(Z≤r), and since each of
these mappings has a small description, the sequence X0, . . . , Xr can be computed from Z1, . . . , Zr

9

by a small circuit holding these mappings. Arguing that the above can be performed by an efficient
(uniform) algorithm, things get slightly more involved. While we can estimate well the mapping
χ1(z) = rnd(E [f(Z) | Z1 = z1]) via sampling, even a small unavoidable error in the estimation
might cause a larger error in the estimation of χ2 = rnd(E [f(Z) | Z2 = z2, Xi−1 = χ1(z)]). This is
since the dependency on χ1 is in the conditioning, and thus estimating χ2 using an estimate of χ1

amplifies the error. This might lead to very large errors when trying to use the estimated mapping
for calculating Xi’s of large indices.

So rather, we consider the efficiently computable sequence X̂ = (X̂1, . . . , X̂r) defined by X̂i =
µ(Z≤i), for µ1, . . . , µr being an estimation for χ1, . . . , χr done via sampling.7 Since X̂ is defined
with respect to the approximated mappings, it is a weak martingale, even if the approximated
mappings wrongly approximate the real ones. The reason is that the quality of X̂i as a “Doob-like

sequence” — i.e. how well it approximates E
[
f(Z) | Zi, X̂i−1

]
— is not affected by the quality

of µ1, . . . , µi−1, and thus errors do not accumulate. Taking the same approach for the sum-of-
squares-augmented weak martingales, our construction yields that with high probability over the
choice of the estimated mappings µ1, . . . , µr, the sequence X̂ satisfies all the properties required by
Theorem 1.3, and thus we can invoke our attack using this sequence.

1.3 Related Work

1.3.1 Coin Flipping

A coin-flipping protocol is δ-fair, if no efficient attacker (controlling any number of parties) can
bias the output (bit) of the honest parties by more than δ.

Upper bounds. Blum [9] presented a two-party two-round coin-flipping protocol with bias 1/4.
Awerbuch et al. [5] presented an n-party r-round protocol with bias O(n/

√
r) (the two-party case

appears also in Cleve [11]). This was improved to (almost) O(1/
√
r) in [6, 14], for the case where

the fraction of honest parties is constant. Moran, Naor, and Segev [29] resolved the two-party case,
presenting a two-party r-round coin-flipping protocol with bias O(1/r). Haitner and Tsfadia [24]
resolved the three-party case up to poly logarithmic factor, presenting a three-party coin-flipping
protocol with bias O(polylog(r)/r). Buchbinder et al. [10] constructed an n-party r-round coin-

flipping protocol with bias Õ(n32n/r
1
2

+ 1
2n−1−2). In particular, their four-party coin-flipping protocol

the bias is Õ(1/r2/3), and for n = log log r their protocol has bias smaller than [5].
For the case where less than 2/3 of the parties are corrupt, Beimel et al. [8] have constructed an

n-party r-round coin-flipping protocol with bias 22k/r, tolerating up to t = (n+ k)/2 corrupt par-
ties. Alon and Omri [1] constructed an n-party r-round coin-flipping protocol with bias Õ(22n/r),
tolerating up to t corrupted parties, for constant n and t < 3n/4.

Lower bounds. Cleve [11] proved that for every r-round two-party coin-flipping protocol there
exists is an efficient adversary that can bias the output by Ω(1/r). Cleve and Impagliazzo [12]
proved that for every r-round two-party coin-flipping protocol there exists an inefficient fail-stop
adversary that biases the output by Ω(1/

√
r). They also showed that a similar attack exists also if

7The mapping µ1, . . . , µr are constructed iteratively. After constructing µ1, . . . , µi−1, the value of µi(z) is set by
approximating via sampling (a rounding of) E [f(Z) | Zi = zi, µi−1(Z) = µi−1(z)].

10

the parties have access to an ideal commitment scheme. All above bounds extend to multi-party
protocol (with no honest majority) via a simple reduction.

A different line of work examines the minimal assumptions required to achieve an o(1/
√
r)-bias

two-party coin-flipping protocols. Dachman-Soled et al. [15] have shown that any fully black-box
construction of O(1/r)-bias two-party protocols based on one-way functions with r-bit input and
output needs Ω(r/ log r) rounds. Dachman-Soled et al. [16] have shown that there is no fully black-
box and function oblivious construction of O(1/r)-bias two-party protocols from one-way functions
(a protocol is function oblivious if the outcome of the protocol is independent of the choice of the
one-way function used in the protocol). Very recently, Haitner et al. [26] have used an attack in
the spirit of the one used in this paper, together with the dichotomy result of Haitner et al. [27], to
prove that key-agreement is a necessary assumption for two-party r-round coin-flipping protocol of
bias o(1/

√
r), as long as r is independent of the security parameter.

A different type of lower bound was given by Cohen et al. [13]. They focused on the commu-
nication model required for fully secure computation, and in particular showed that in the setting
where broadcast is impossible (e.g., peer-to-peer network with 1/3 fraction of dishonest parties),
there exists no many-party coin-flipping protocol with non-trivial bias (i.e., noticeably smaller then
1/2).

1.3.2 1/p-Secure Protocols

Cleve [11] result implies that for many functions fully-secure computation without an honest major-
ity is not possible. Gordon and Katz [22] suggested the notion of 1/p-secure computation to bypass
this impossibility result. Very informally, a protocol is 1/p-secure if every poly-time adversary
can harm the protocol with probability at most 1/p (e.g., with probability 1/p the adversary can
learn the inputs of honest parties, get the output and prevent the honest parties from getting the
output, or bias the output). Gordon and Katz [22] constructed for every polynomial p(κ) (where
κ is the security parameter) an efficient two-party 1/p(κ)-secure protocol for computing a function
f , provided that the size of the domain of at least one party in f or the size of the range of f is
bounded by a polynomial. Beimel et al. [7] generalized this result to multi-party protocols when
the number of parties is constant – for every function f with O(1) inputs such that the domain
of each party (or the size of the range of f) is bounded by a polynomial and for every polynomial
p(κ), they presented an efficient 1/p(κ)-secure protocol for computing the function.

Gordon and Katz [22] and Beimel et al. [7] also provided impossibility results explaining why
their protocols require bounding the size of the domain or range of the functions. Specifically,
Gordon and Katz [22] described a two-party function whose size of domain of each party and size
of range is κω(1) such that this function cannot be computed by any poly-round protocol achieving
1/3-security. Beimel et al. [7] used this result to construct a function f : {0, 1}ω(logn) → κω(1) (i.e.,
a function with ω(log n) parties where the domain of each party is Boolean) such that this function
cannot be computed by any poly-round protocol achieving 1/3-security. They also showed the same
impossibility result for a function with ω(1) parties where the domain of each party is bounded by
a polynomial is the security parameter. We emphasize that these impossibility results do not apply
to coin-flipping protocols, where the parties do not have inputs.

1.3.3 Complete Fairness Without Honest Majority

Cleve [11] result was interpreted as saying that non-trivial functions cannot be computed with

11

complete fairness without an honest majority. In a surprising result, Gordon et al. [23] have shown
that the millionaire problem with a polynomial size domain and other interesting functions can be
computed with complete fairness in the two-party setting. The two-party functions that can be
computed with complete fairness were further studied in [3, 2, 28, 4]; in particular, Asharov et al.
[4] characterized the Boolean functions that can be computed with complete fairness. Gordon and
Katz [21] have studied complete fairness in the multi-party case and constructed completely-fair
protocols for non-trivial functions in this setting.

1.3.4 Differential Privacy

Differential privacy, introduced by Dwork et al. [19], provides a provable guarantee of privacy for
data of individuals. Assume there is a database containing private information of individuals and
there is an algorithm computing some function of the database. We say that such randomized
algorithm is differentially private if changing the data of one individual has small affect on the
output of the algorithm. For example, if, for a database D, a function f(D) returns a numerical
value in [0, 1], then an algorithm returning f(D) + noise, where noise is distributed according to
the Laplace distribution (with suitable parameters), is a differentially private algorithm. Since the
introduction of differential privacy in 2006, many algorithms satisfying differential privacy were
introduced, see, e.g., Dwork and Roth [18]. In this work we use differential privacy (i.e., Laplace
noise) not for protecting privacy, but rather to provide oblivious sampling. This is similar in spirit
to the usage of differential privacy, by Dwork et al. [20], to enable adaptive queries to a database.

Open Questions

Our lower bound is only applicable if the number of parties n is greater than log(r), and it is very
close to the n/

√
r-upper bound (protocol) of [5], if the number of parties is n = rε for “small”

ε > 0. For n < loglog r parties, the upper bounds of [30, 25, 10] tell us that no attack achieving
Õ(1/

√
r)-bias exists. For loglog(r) < n ≤ log(r) parties, we know of no such limitation, yet our

attack is either innaplicable, or it yields a bias that is smaller than 1/r. Thus, for the latter choice of
parameters, the only known bound remains the 1/r-lower bound of [11], which is far from meeting
the upper bound of [5].

Paper Organization

Basic definitions and notation used throughout the paper, are given in Section 2, we also prove
therein some useful inequalities used by the different sections. Our result for augmented week
martingales is stated and proved in Section 3, and the oblivious sampling result is given in Section 4.
The proof of the main theorem is given in Section 5.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and functions, lowercase
for values, and boldface for vectors. All logarithms considered here are in base two. For a vector v,
we denote its ith entry by vi or v[i]. For a ∈ R and b ≥ 0, let a±b stand for the interval [a−b, a+b].
Given sets S1, . . . ,Sk and k-input function f , let f(S1, . . . ,Sk) := {f(x1, . . . , xj) : xi ∈ Si}, e.g.,

12

f(1 ± 0.1) = {f(x) : x ∈ [.9, 1.1]}. For n ∈ N, let [n] := {1, . . . , n} and (n) := {0, . . . , n}. Given a
vector v ∈ {0, 1}∗, let w(v) :=

∑
i∈[|v|] vi. For x, δ ∈ [0, 1] let rndδ(x) = kδ, for k ∈ Z being the

largest number with kδ ≤ x. For a function f : A 7→ B, let Im(f) = {f(a) : a ∈ A}.
Let poly denote the set of all polynomials, let ppt stand for probabilistic polynomial time, let

pptm denote a ppt algorithm (Turing machine) and let pptmNU stands for a non-uniform pptm.
A function ν : N → [0, 1] is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly
and large enough n.

2.2 Coin-Flipping Protocols

Since the focus of this paper is showing the non-existence of coin-flipping protocols with small bias,
we will only focus on the correctness and bias of such protocols. See [25] for a complete definition
of such protocols.

Definition 2.1 (correct coin-flipping protocols). A multi-party protocol is a correct coin-flipping
protocol, if

• When interacting with an efficient adversary controlling a subset of the parties, the honest
parties always output the same bit, and

• The common output in a random honest execution of the protocol is a uniform bit.

Definition 2.2 (Biassing coin-flipping protocols). An adversary A controlling a strict subsets of the
parties of a correct coin-flipping protocol biases its output by δ ∈ [1/2, 1], if when interacting with
the parties controlled by A, the remaining honest parties output some a priory fixed bit b ∈ {0, 1}
with probability 1

2 + δ.
Such an adversary is called fail stop, if the parties in its control honestly follow the prescribed

protocol, but might abort prematurely. The adversary is a rushing adversary, that is, in each round,
first the honest parties send their messages, then the adversary might instruct some of the parties
to abort (that is, send a special “abort” message to all other parties), and finally, all corrupt parties
that have not aborted send their messages.

2.3 Basic Probability Facts

Given a distribution D, we write x ← D to indicate that x is selected according to D. Similarly,
given a random variable X, we write x ← X to indicate that x is selected according to X. Given
a finite set S, we let s ← S denote that s is selected according to the uniform distribution on S.
Let D be a distribution over a finite set U , for u ∈ U , denote D(u) = PrX←D [X = u] and for
S ⊆ U denote D(S) = PrX←D [X ∈ S]. Let the support of D, denoted Supp(D), be defined as
{u ∈ U : D(u) > 0}. The statistical distance between two distributions P and Q over a finite set
U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|.

Fact 2.3 (Hoeffding’s inequality). Let X = {xi ∈ {0, 1}}ni=1 and µ = 1
n ·
∑n

i=1 xi. Let E ←
([n]
n/2

)
i.e. E denotes a random subset of [n] of size n/2. For any ε ≥ 0, it holds that

Pr

[∣∣∣∣∣µ− 2

n
·
∑
`∈E

xi

∣∣∣∣∣ ≥ ε/√n
]
≤ 2 exp(−ε2) .

13

2.3.1 The Laplace Distribution

Definition 2.4. The Laplace distribution with parameter λ ∈ R+, denoted Lap(λ), is defined by
the density function f(x) = exp(− |x| /λ)/2λ .

The following facts easily follow from the definition of the Laplace distribution.

Fact 2.5. For every x ∈ R, it holds that

Pr [Lap(λ) ≥ λ |x|] =
1

2
· exp(− |x|),

Pr [Lap(λ) ≥ −λ |x|] = 1− 1

2
· exp(− |x|).

Fact 2.6. Let γ, γ′ ∈ R and λ ∈ R+. Let p = Pr [Lap(λ) ≥ λγ] and p′ = Pr [Lap(λ) ≥ λγ′]. If
|ε = γ′ − γ| ≤ 1, then p/p′ ∈ 1± 5ε.

For completeness, the proof of Fact 2.6 is given in Appendix A.

2.3.2 Useful Observations about Iterated Bernoulli Trials

The next lemma bounds the statistical distance between the first success for two experiments of r
independent Bernoulli trials satisfying a certain notion of closeness.

Lemma 2.7. Consider two iterative sequences, each of r independent Bernoulli trials. Let pi, p
′
i ∈

[0, 1] denote the success probability of the ith trial of the first and second sequence, respectively.
Assume that pr = p′r = 1. For i ∈ [r], let qi = pi ·

∏
j<i(1− pj) and q′i = p′i ·

∏
j<i(1− p′j). Let ε be

such that for all i ∈ [r], it holds that pi
p′i
,
p′i
pi
,

(1−p′i)
(1−pi) ,

(1−pi)
(1−p′i)

∈ (1±ε). Then,
∑r−1

i=1 |qi − q′i| ≤ 4ε(1−qr).

The proof of Lemma 2.7 is given in Appendix A (see Lemma A.4).

2.3.3 Useful Observations about Conditional Expectation

The proofs of the following facts are given in Appendix A.

Fact 2.8. For arbitrary random variables A and B, it holds that

E [AB | B] = B ·E [A | B] .

Fact 2.9 (Tower Law). For arbitrary random variables A, B and C, it holds that

E [E [A | B,C] | B] = E [A | B] .

Fact 2.10. For arbitrary random variables A, B, and arbitrary function f , it holds that

E [A | E [A | B] , f(B)] = E [A | B] .

Fact 2.11. Let A, B, and C be random variables such that supp(B) ⊆ R. If E [A | B,C] = B
then

E [A | rndδ(B), C] ∈ rndδ(B)± δ .

14

2.4 Martingales

In this section we define weaker variants of martingales.

Definition 2.12 (δ-martingales). Let X0, . . . , Xr be a sequence of random variables. We say that
the sequence is a δ-strong martingale sequence if E [Xi+1 | X≤i = x≤i] ∈ xi±δ for every i ∈ [r−1].
We say that the sequence is a δ-weak martingale sequence if E [Xi+1 | Xi = xi] ∈ xi ± δ for every
i ∈ [r − 1]. If δ = 0, the above are just called strong and weak martingale sequence respectively.

In plain terms, a sequence is a strong martingale if the expectation of the next point conditioned on
the entire history is exactly the last observed point. Analogously, a sequence is a weak martingale if
the expectation of the next point conditioned on the previous point is equal to the previous point.

Definition 2.13 (SoS-augmented δ-weak martingale). Let X0, . . . , Xr be a sequence of ran-
dom variables. We say that the sequence is a SoS-augmented δ-weak martingale sequence if

E
[
Xi+1 | Xi = xi,

∑
j<i(Xj+1 −Xj)

2 = σ
]
∈ xi ± δ for every i ∈ [r − 1].

In a sense, a sequence is a SoS-augmented weak martingale if it satisfies the weak martingale
property and it is “distance-oblivious”, i.e. the expectation is unaffected by conditioning on the
quantity

∑
j<i(Xj+1 −Xj)

2, which captures the distance the sequence has traveled thus far.

Definition 2.14 (Associated difference sequence). Let X0, . . . , Xr be a an arbitrary sequence and
define Yi = Xi − Xi−1, for every i ∈ [r]. The sequence Y1 . . . Yr is referred to as the difference
sequence associated with X0, . . . , Xr.

By Definitions 2.12 and 2.14, it follows immediately that a sequence Y1 . . . Yr is a δ-strong martingale
difference if and only if E [Yi | Y1, . . . , Yi−1] ∈ ±δ, and that a sequence Y1 . . . Yr is a δ-weak martin-
gale difference if and only if E

[
Yi |

∑
`<i Y`

]
∈ ±δ. By Definitions 2.13 and 2.14, a sequence Y1 . . . Yr

is a SoS-augmented δ-weak martingale difference if and only if E
[
Yi |

∑
`<i Y`,

∑
`<i Y

2
`

]
∈ ±δ.

Sequences that behave like martingales most of the time. We also define sequences that
satisfy the different flavors of the martingale property with high probability. Such sequences are
referred to as (γ, δ)-martingales.

Definition 2.15 ((γ, δ)-martingales). Let X0, . . . , Xr be a sequence of random variables. We say
that the sequence is a (γ, δ)-strong martingale sequence if

Prx≤r←X≤r [∃i s.t. E [Xi+1 | X≤i = x≤i] /∈ xi ± δ] ≤ γ .

We say that the sequence is a (γ, δ)-weak martingale sequence if

Prx≤r←X≤r [∃i s.t. E [Xi+1 | Xi = xi] /∈ xi ± δ] ≤ γ .

Definition 2.16 (SoS-augmented (γ, δ)-weak martingale). Let X0, . . . , Xr be a sequence of random
variables. We say that the sequence is a SoS-augmented δ-weak martingale sequence if

Prx≤r←X≤r

∃i s.t. E

Xi+1 | Xi = xi,
∑
j<i

(Xj+1 −Xj)
2 = σ

 /∈ xi ± δ

 ≤ γ .

15

3 Augmented Weak Martingales have Large Gaps

In this section, we prove a result about sequences that satisfy a weaker version of the “martingale
property”. Namely, we show that for any sequence satisfying the SoS-augmented δ-weak martingale
property, if X0 = 1/2 and Xr ∈ {0, 1}, then the quantity

∑r
i=1(Xi −Xi−1)2 is greater than 1/16

with constant probability. As a corollary, we obtain a generalization of the result of Cleve and
Impagliazzo [12], who showed that (strong) martingales have large gap between consecutive points.
We emphasize that our results extend immediately to the usual notion of (strong) martingale
sequences. The reader is referred to Section 1.1.1 for an informal discussion and motivation for the
present section.

Recall (cf., Section 2.4) that a sequence X0, . . . , Xr is a δ-weak martingale, if
E [Xi+1 | Xi = xi] ∈ xi±δ for every i ∈ [r−1] and xi ∈ supp(Xi). Further recall that the difference
sequence associated with X0, . . . , Xr is the sequence Y1, . . . , Yr defined by Yi = Xi − Xi−1, for
every i ∈ [r]. We begin by extending to weak martingales a result of DasGupta [17] for strong
martingales. We will use this result in the proof of our main theorem.

Lemma 3.1. Let X0 . . . Xr be a δ-weak martingale and let Yi = Xi−Xi−1. If Xi ∈ [0, 1] for every

i ∈ [r], then E
[
X2
r −X2

0

]
∈ E

[∑
i∈[r] Y

2
i

]
± 2rδ.

Proof. Write E
[∑

i Y
2
i

]
= E

[∑
i(Xi −Xi−1)2

]
= E

[∑
i

(
X2
i − 2XiXi−1 +X2

i−1

)]
, and let ∆i =

−Xi−1 + E [Xi | Xi−1]. By the δ-weak martingale property, ∆i ∈ ±δ. Since Xi−1 ∈ [0, 1] and
∆i ∈ ±δ, it holds that

E [Xi−1 ·∆i] ∈ ±E [|∆i|] ∈ ±δ. (12)

Furthermore,

E [XiXi−1] = E [E [XiXi−1 | Xi−1]] (13)

= E [Xi−1 ·E [Xi | Xi−1]] (14)

= E [Xi−1 · (Xi−1 −Xi−1 + E [Xi | Xi−1])]

= E
[
X2
i−1

]
+ E [Xi−1∆i]

∈ E
[
X2
i−1

]
± δ.

Equations (13) and (14) follow from Fact 2.9 and Fact 2.8, respectively. To conclude, we observe

that E
[∑

i∈[r] Y
2
i

]
∈ E

[∑
i∈[r](X

2
i −X2

i−1)
]
± 2rδ = E

[
X2
r −X2

0

]
± 2rδ. �

Recall that a sequence X0 . . . Xr is a SoS-augmented δ-weak martingale if

E
[
Xi+1 | Xi = xi,

∑
`≤i(Xi −Xi−1)2 = σ

]
∈ xi ± δ for every i ∈ [r − 1], xi ∈ supp(Xi) and

σ ∈ supp(
∑

`≤i(Xi −Xi−1)2). Following is the main result of this section.

Theorem 3.2. For δ < 1/100r, let X0, . . . , Xr be a SoS-augmented δ-weak martingale sequence
such that Xi ∈ [0, 1] for every i ∈ [r]. Assuming X0 = 1/2 and Pr [Xr ∈ {0, 1}] = 1, then

Pr
[∑

i∈[r](Xi −Xi−1)2 ≥ 1/16
]
≥ 1/20.

16

Remark 3.3. Theorem 3.2 also holds for the “standard” flavor of martingales, i.e., strong martin-
gales. Readers who are only interested in the strong case are advised to carry on reading by replacing
below “SoS-augmented δ-weak” with “strong” and taking δ = 0; the proof remains coherent.

Theorem 3.2 is proven below, but we first sketch its proof. Assume without loss of generality that
Pr [Xr = 1] ≥ 1/2 (otherwise apply the argument to the sequenceX ′0, . . . , X

′
r defined byX ′i = 1−Xi,

for every i ∈ [r]). Notice that if Pr
[∑r

i=1(Xi −Xi−1)2 ≥ 1
16

]
= 0 then E

[∑r
i=1(Xi −Xi−1)2

]
≤

1
16 , in contradiction with Lemma 3.1 which states that E

[∑r
i=1(Xi −Xi−1)2

]
= E

[
X2
r −X2

0

]
≥

1
4 . We argue that a similar contradiction can be derived if Pr

[∑r
i=1(Xi −Xi−1)2 ≥ 1

16

]
< 1/20.

Unfortunately, we cannot apply the same inequality as before because we have no control over the
quantity

∑r
i=1(Xi−Xi−1)2 when it is greater than 1/16 (a crude upper bound is r which is utterly

unhelpful). Our solution is to construct a weak martingale sequence U0, . . . , Ur which is “coupled”
with the X-sequence in the following way: Ui is equal to Xi as long as

∑i−1
`=1(X` − X`−1)2 ≤ 1

16 ,
and Ui = Ui−1 otherwise. Then, we argue that E

[
U2
r − U2

0

]
≥ 1

4 − Pr
[∑r

i=1(Xi −Xi−1)2 ≥ 1
16

]
by observing that Pr

[∑r
i=1(Xi −Xi−1)2 ≥ 1

16

]
roughly corresponds to the probability that the

two sequences diverge. We then upper bound the latter by applying Lemma 3.1 to the sequence
U0, . . . , Ur which we have a much better grasp on, since, by construction,

∑r
i=1(Ui − Ui−1)2 can

never exceed 1/16 by much.

Proof of Theorem 3.2. Assume without loss of generality that Pr [Xr = 1] ≥ 1/2. Further assume
that Pr

[
∃i s.t. |Yi| ≥ 1

4

]
< 1

20 , as otherwise our theorem is trivially true. Define the sequence
U0 . . . Ur by Ui = Xi if

∑
j<i Y

2
i ≤ 1

16 , and Ui = Ui−1 otherwise. We show that U0, . . . , Ur is a δ-
weak martingale, i.e., E [Ui | Ui−1 = u] ∈ u ± δ. Write Zi = Ui − Ui−1 and fix u ∈ supp(Ui−1)

and σ ∈ supp(
∑

j<i Z
2
j) . Observe that E

[
Zi | Ui−1 = u,

∑
j<i Z

2
i = σ

]
= 0 if σ > 1

16 , and

E
[
Zi | Ui−1 = u,

∑
j<i Z

2
i = σ

]
= E

[
Yi | Xi−1 = u,

∑
j<i Y

2
i = σ

]
otherwise. Thus, by the SoS-

augmented property of Y , it holds that

E

Zi | Ui−1 = u,
∑
j<i

Z2
i = σ

 ∈ ±δ. (15)

Since u and ζ were chosen arbitrarily, we deduce that E [Zi | Ui−1 = u] ∈ ±δ, and thus U0, . . . , Ur
is a δ-weak martingale sequence. Furthermore, since Ui ∈ [0, 1], by Lemma 3.1,

E
[
U2
r

]
− 1

4
≤ E

∑
i∈[r]

Z2
i

+ 2rδ (16)

≤ Pr

[
∃i ∈ [r] s.t. |Yi| ≥

1

4

]
·
(

1

16
+ 1

)
+ Pr

[
∀i ∈ [r] |Yi| <

1

4

]
·
(

1

16
+

1

16

)
+ 2rδ

(17)

≤ 1

20
·
(

1

16
+ 1

)
+ 1 ·

(
1

16
+

1

16

)
+ 2rδ

≤ 0.18 + 2rδ.

Equation (17) follows from the fact that, by construction, the quantity
∑r

i=1 Z
2
i is equal to∑Γ+1

i=1 Y
2
i , where Γ is the largest index such that

∑Γ
i=1 Y

2
i ≤ 1

16 . On the other hand, by noting that

17

Pr [Xr 6= Ur] ≤ Pr
[∑

i∈[r] Y
2
i >

1
16

]
,

E
[
U2
r

]
≥ 12 · Pr [Ur = 1] (18)

≥ 12 · Pr [Xr = 1 ∧Xr = Ur]

≥ 12 · (Pr [Xr = 1]− Pr [Xr 6= Ur])

≥ 1/2− Pr [Xr 6= Ur]

≥ 1/2− Pr

∑
i∈[r]

Y 2
i >

1

16

 .
Combine Equations (16) and (18) we deduce that

Pr

[∑
i

Y 2
i >

1

16

]
≥ 1

4
− 0.18− 2rδ ≥ 1

20
,

where the last inequality is true since δ ≤ 1/100r.
�

Theorem 3.2 immediately yields the following corollary.

Corollary 3.4. For δ < 1/100r, let X0, . . . , Xr be a SoS-augmented δ-weak martingale se-
quence such that Xi ∈ [0, 1] for every i ∈ [r]. If X0 = 1/2 and Pr [Xr ∈ {0, 1}] = 1, then

Pr
[
∃i ∈ [r] s.t. |Xi −Xi−1| ≥ 1

4
√
r

]
≥ 1

20 .

Ans also the following corollary follows via a simple coupling argument.

Corollary 3.5. For γ < 1/1000 and δ < 1/100r, let X0, . . . , Xr be a SoS-augmented (γ, δ)-weak
martingale sequence such that Xi ∈ [0, 1] for every i ∈ [r]. If X0 = 1/2 and Pr [Xr ∈ {0, 1}] = 1,

then Pr
[
∃i ∈ [r] s.t. |Xi −Xi−1| ≥ 1

4
√
r

]
≥ 1

20 − γ.

Remark 3.6. We mention that for any constant γ < 1/2, it can be shown that the sequence has
gaps of order 1/

√
r, with constant probability. For the specific choice of parameters 1/4

√
r and

1/20, the value of γ should be smaller than 1/1000.

Remark 3.7 (Extensions). We remark that we can replace the requirement Xi ∈ [0, 1] for the less
restrictive |Xi −Xi−1| ≤ 1 in Theorem 3.2 and its corollaries. However, the resulting claims offer
no gains for the purposes of the present paper and their proofs are significantly longer, as far as
we can tell. Therefore, we only prove here the more restrictive versions as stated in the present
section.

4 Oblivious Sampling via Differential Privacy

Consider the following r-round game in which your goal is to maximize the revenue of a random
“party” H ← H. In the beginning, a party H is chosen with uniform distribution from H (where
H is a finite set of parties). In each round, values

{
shi ∈ [0, 1]

}
h∈H are assigned to the parties of H,

but only the values {sh}h∈H\{H} of the other parties are published. You can decide to abort, and

18

then party H is rewarded by sHi , or to continue to the next round. If an abort never occurs, party
H is rewarded by sHr (last round value). You have the similarity guarantee that

∣∣shi − si∣∣ ≤ σ for
every h ∈ H, letting si = Eh←H

[
shi
]
. You are also guarantee that maxi {si} ≥ γ.

In this section we analyze the following “differentially private based” approach for this task,
which is described by the following experiment (the basic game described above is captured by the
experiment for p = 1/n).

Experiment 4.1 (LapExp: Oblivious sampling experiment).

Parameters: H = {1, . . . , n}, S =
{
shi ∈ [−1, 1]

}
i∈[r],h∈H, p ∈ [0, 1/2], γ ∈ [0, 1] and λ ∈ R+.

Notation: Let si = 1
n

∑
h∈H s

h
i and for h ∈ H let s

\h
i = 1

1−p(si − p · shi).

Description:

1. Sample h← H.

2. For i = 1, . . . , r − 1:

(a) Sample νi ← Lap(λ).

(b) If s
\h
i + νi ≥ γ, output shi and halt.

3. Output shr .

. .

Let LapExp(H,S, γ, λ) denote the above experiment with parameters H, S, γ and λ. Theo-
rem 4.2 analyzes the expected value of the output of LapExp(H,S, γ, λ).

Theorem 4.2 (Quality of the oblivious sampling experiment). Let H, S, γ, λ and p be as
in Experiment 4.1, with shr = sr for every h ∈ H. Let σh = maxi

{∣∣si − shi ∣∣}, let S imilar ={
h ∈ H : σh ≤ λ · (1− p)/p

}
and NonS imilar = H \ S imilar.

Let H be the value of h and J be the halting round (set to r if Experiment 4.1 does not halt in
step (2b)) in a random execution of LapExp(H,S, γ, λ). Then E

[
sHJ
]
≥ E [vH]− r · e−γ/2λ, where

vh =

{
Pr [J 6= r | H = h] ·

(
γ
2 −

40(σh)2

λ · p
1−p

)
, h ∈ S imilar,

−4σh, h ∈ NonS imilar.

If si ≥ γ for some i ∈ [r − 1], then Pr [J 6= r | H = h] ≥ 1/6, for every h ∈ S imilar.

When using Theorem 4.2 in our proofs, the values S =
{
shi ∈ [−1, 1]

}
i∈[r],h∈H are calculated for a

fixed transcript of the coin-flipping protocol. Corollary 4.3 analysis the expected value of the output
when first a transcript τ is chosen, then the values Sτ are computed, and finally LapExp(H,Sτ , γ, λ)
is executed.

Corollary 4.3. Let H, γ, λ and p be as in Experiment 4.1. Let S =
{
Sτ =

{
shi (τ)

}
i∈[r],h∈H

}
τ∈T

denote a set of numbers in [−1, 1] indexed by i ∈ [r], h ∈ H and τ taking values in some set T .
Define σh(τ) = maxi

{∣∣si(τ)− shi (τ)
∣∣}. Let T be a random variable taking values in T , and let H

be the value of h and J be the halting round (set to r if Experiment 4.1 does not halt in step (2b))
in a random execution of LapExp(H,Sτ←T , γ, λ). Further assume that there exist real numbers α,
β, γ, δ ∈ [0, 1] such that

19

• α ≤ λ(1− p)/2p,

• Prτ←T
[
σh(τ) ≥ ρ · α

]
≤ 1

ρ · β, for every h ∈ H and ρ ≥ 1,

• Prτ←T
[
maxi∈[r] si(τ) ≥ γ

]
≥ δ.

Then,

E
[
sHJ (T)

]
≥ 1

6
· (δ − β/2) ·

(
γ

2
− 40 · α2p

λ(1− p)

)
− 168αβ − 8αβ log(1/λ)− r

2
· e−γ/2λ.

In particular, if γ ≥ 1
256
√
r
, λ = γ/(4 log(r)), α ≤ γ

√
4(1−p)/p

32 log(r) and β ≤ δ

16
√

(1−p)/p
, then E

[
sHJ (T)

]
≥

γδ/125− 1
2r , for r large enough.

4.1 Proving Theorem 4.2

Proof of Theorem 4.2. For h ∈ H and i ∈ [r], let dhi = s
\h
i − shi . We next compute E

[
sHJ
]
.

E
[
sHJ
]

=
∑

i∈[r],h∈H

shi · Pr [H = h ∧ J = i] (19)

=
∑
i,h

(s
\h
i − d

h
i) · Pr [H = h ∧ J = i]

=
∑
i,h

s
\h
i · Pr [H = h ∧ J = i]−

∑
i,h

dhi · Pr [H = h ∧ J = i]

= E
[
s
\H
J

]
−
∑
i,h

dhi · Pr [H = h ∧ J = i]

= E
[
s
\H
J

]
− 1

n
·
∑

i∈[r],h∈h

dhi · Pr [J = i | H = h]

= E
[
s
\H
J

]
− 1

n
·

∑
i∈[r−1],h∈h

dhi · Pr [J = i | H = h] .

The last equality holds since, by assumption, sr = shr for any h, thus, dhr = 0.

We start by upper bounding the right hand term above (i.e.,
∑

i,h d
h
i · Pr [J = i | H = h]). For

h ∈ H and i ∈ [r − 1], let

phi = Pr
[
Lap(λ) + s

\h
i ≥ γ

]
, phr = 1, and qhi = phi ·

∏
j<i

(1− phj).

Note that qhi = Pr [J = i | H = h]. For i ∈ [r], let

pi = Pr [Lap(λ) + si ≥ γ] and qi = pi ·
∏
j<i

(1− pj).

Let σhi = si−shi and σ
\h
i = si−s\hi . Note that dhi = −σ\hi +σhi . Since si = (1−p)·s\hi +p·shi , it holds

that σ
\h
i = −p · σhi /(1− p). In particular, for any h ∈ S imilar it holds that

∣∣σhi ∣∣ ≤ σhi ≤ λ(1− p)/p

20

and
∣∣∣σ\hi ∣∣∣ ≤ λ. Hence, Fact 2.6 yields that phi /pi ∈ 1 ± 5σ\h/λ for any h ∈ S imilar. Therefore, by

Lemma 2.7 ∑
i∈[r−1]

∣∣∣qi − qhi ∣∣∣ ≤ 20

λ
· σ\h · (1− qhr) ≤ 20p

λ(1− p)
· σh · (1− qhr). (20)

for any h ∈ S imilar. Define dh = maxi
{∣∣dhi ∣∣}. It follows that∑

i∈[r−1],h∈H

dhi · Pr [J = i | H = h] =
∑
i,h

dhi · qhi (21)

=
∑
i,h

dhi · qi +
∑
i,h

dhi · (qhi − qi)

=
∑
i,h

dhi · (qhi − qi)

≤
∑

h∈Similar

dh
∑

i∈[r−1]

∣∣∣qhi − qi∣∣∣+
∑

h∈NonSimilar

2dh

≤ 20p

λ · (1− p)
·
∑

h∈Similar

dh · σh · (1− qhr) +
∑

h∈NonSimilar

2dh

≤ 20p

λ · (1− p)
·
∑

h∈Similar

2(σh)2 · (1− qhr) +
∑

h∈NonSimilar

4σh.

The second equality holds since
∑

h∈H σ
h
i = 0 for any i ∈ [r], and thus

∑
h∈H σ

\h
i = 0 and∑

h∈H d
h
i = 0. The last inequality holds since p ≤ 1/2 and thus dh = | − pσh/(1− p)− σh| ≤ 2σh.

The next step is to lower bound E
[
s
\H
J

]
. By Fact 2.5,

Pr
[
J 6= r ∧ s\HJ ≤ γ/2

]
=

r−1∑
i=1

Pr
[
J = i ∧ s\Hi ≤ γ/2

]
≤ r

2
· e−γ/2λ. (22)

Hence, since Pr [J 6= r] = Pr
[
J 6= r ∧ s\HJ > γ/2

]
+ Pr

[
J 6= r ∧ s\HJ ≤ γ/2

]
,

E
[
s
\H
J

]
≥ Pr

[
J 6= r ∧ s\HJ > γ/2

]
· γ/2− 1 · Pr

[
J 6= r ∧ s\HJ ≤ γ/2

]
(23)

≥
(

Pr [J 6= r]− r

2
· e−γ/2λ

)
· γ/2− r

2
· e−γ/2λ

≥ Pr [J 6= r] · γ/2− r · e−γ/2λ

= E
[
1− qHr

]
· γ/2− r · e−γ/2λ

≥

(
1

n

∑
h∈Similar

(1− qhr) · γ/2

)
− r · e−γ/2λ.

Thus, by Equations (19), (21) and (23),

E
[
sHJ
]

(24)

≥ 1

n

(∑
h∈Similar

(1− qhr) ·
(
γ/2− 40

λ · (1− p)/p
(σh)2

))
− 1

n

∑
h∈NonSimilar

4σh − r · e−γ/2λ.

21

To conclude the proof we need to show that if si ≥ γ for some i ∈ [r − 1], then (1− qhr) ≥ 1/6 for
all h ∈ S imilar. Let i ∈ [r − 1] be a round with si ≥ γ. For every h ∈ S imilar, we have shown that∣∣∣σ\hi ∣∣∣ ≤ λ, thus, s

\h
i ≥ γ − λ. By Fact 2.5, it holds that phi ≥ Pr [Lap(λ) ≥ λ] = exp(−1)/2 ≥ 1/6.

Hence, 1− qhr ≥ 1/6, for all h ∈ S imilar. �

4.2 Proving Corollary 4.3

Before proving the theorem, we state and prove two claims regarding the expectation of the simi-
larity gap.

Claim 4.4. Under the hypothesis of Corollary 4.3, it holds that

E
[
σh(T) | σh(T) ≥ (1− p)λ/p

]
· Pr

[
σh(T) ≥ (1− p)λ/p

]
≤ 2αβ log(1/λ) + 2αβ, (25)

E
[
(σh(T))2 | σh(T) ∈ [α, (1− p)λ/p]

]
· Pr

[
σh(T) ∈ [α, (1− p)λ/p]

]
≤ 4(1− p)λαβ/p. (26)

for every h ∈ H.

Proof. We begin by showing (25).

E
[
σh(T) | σh(T) ≥ (1− p)λ/p

]
· Pr

[
σh(T) ≥ (1− p)λ/p

]
≤

log(1/α)∑
i=log((1−p)λ/pα)

α2i+1 · Pr
[
σh(T) ∈ α · [2i, 2i+1]

]

≤
log(1/α)∑

i=log((1−p)λ/pα)

α2i+1 · Pr
[
σh(T) ≥ 2i · α

]

≤
log(1/α)∑

i=log((1−p)λ/pα)

α2i+1 · 2−iβ

= 2αβ (log(1/α)− log((1− p)λ/pα) + 1)

= 2αβ log(p/(1− p)λ) + 2αβ ≤ 2αβ log(1/λ) + 2αβ.

Next, we show (26).

E
[
(σh(T))2 | σh(T) ∈ [α, (1− p)λ/p]

]
· Pr

[
σh(T) ∈ [α, (1− p)λ/p]

]
≤

log((1−p)λ/pα)−1∑
i=0

α222i+2 · Pr
[
σh(T) ∈ α · [2i, 2i+1]

]

≤
log((1−p)λ/pα)−1∑

i=0

α222i+2 · 2−i · β

= 4α2β

log((1−p)λ/pα)−1∑
i=0

2i

= 4α2β((1− p)λ/pα− 1) ≤ 4αβ(1− p)λ/p.

�

22

Proof of Corollary 4.3. Using the notation from Theorem 4.2, since r · e−γ/2λ ≤ − 1
2r , for r large

enough, it suffices to bound E [vh | H = h] for an arbitrary h. To prove the claim, we will combine
Theorem 4.2 with (25) and (26) from Claim 4.4. Having fixed H = h, all probabilities and expec-
tations below are conditioned on H = h. To alleviate notation, we will omit specifying that H = h,
i.e. instead of E [· · · | · · · ∧H = h] and Pr [· · · | · · · ∧H = h], we write E [· · · | · · ·] and Pr [· · · | · · ·].
Using the notation from Theorem 4.2 , we compute

E [vh] = E
[
vh | σh(T) ≤ α

]
· Pr

[
σh(T) ≤ α

]
+ E

[
vh | σh(T) ∈ [α, (1− p)λ/p]

]
· Pr

[
σh(T) ∈ [α, (1− p)λ/p]

]
+ E

[
vh | σh(T) ≥ (1− p)λ/p

]
· Pr

[
σh(T) ≥ (1− p)λ/p

]
.

We compute each of these terms separately. First, by expanding over all possible transcripts,

E
[
vh | σh(T) ≤ α

]
· Pr

[
σh(T) ≤ α

]
= Pr

[
σh(T) ≤ α

]
·

∑
τ s.t. σh(τ)≤α

E [vh | T = τ] · Pr
[
T = τ | σh(T) ≤ α

]
.

≥ Pr
[
σh(T) ≤ α

]
·

∑
τ s.t. σh(τ)≤α

(
γ

2
− 40 · α2

λ(1− p)/p

)
· Pr [J 6= r | T = τ] · Pr

[
T = τ | σh(T) ≤ α

]
.

Where the last inequality follows by the definition of vh when h is similar (cf.,). Consequently,

E
[
vh | σh(T) ≤ α

]
· Pr

[
σh(T) ≤ α

]
≥
(
γ

2
− 40 · α2

λ(1− p)/p

)
· Pr

[
J 6= r ∧ σh(T) ≤ α

]
(27)

Next, write psim = Pr
[
σh(T) ∈ [α, (1− p)λ/p]

]
. For the second term, again by expanding over all

possible transcripts, we compute

E
[
vh | σh(T) ∈ [α, (1− p)λ/p]

]
· Pr

[
σh(T) ∈ [α, (1− p)λ/p]

]
= psim ·

∑
τ s.t.

σh(τ)∈[α,(1−p)λ/p]

E [vh | T = τ] · Pr
[
T = τ | σh(T) ∈ [α, (1− p)λ/p]

]

For any fixed τ such that σh(τ) ∈ [α, (1 − p)λ/p], by the definition of vh when h is similar (cf.,
Theorem 4.2), it holds that

E [vh | T = τ] ≥ Pr [J 6= r | T = τ]

(
γ

2
− 40

λ(1− p)/p
·E
[
(σh)2 | T = τ

])
≥ Pr [J 6= r | T = τ] · γ

2
− 40

λ(1− p)/p
·E
[
(σh)2 | T = τ

]

23

and we deduce that

E
[
vh | σh(T) ∈ [α, (1− p)λ/p]

]
· Pr

[
σh(T) ∈ [α, (1− p)λ/p]

]
≥ γ

2
· Pr

[
J 6= r ∧ σh(T) ∈ [α, (1− p)λ/p]

]
− 40

(1− p)λ/p
·E
[
(σh(T))2 | σh(T) ∈ [α, (1− p)λ/p]

]
· Pr

[
σh(T) ∈ [α, (1− p)λ/p]

]
. (28)

Finally, by the definition of vh when h is non-similar (cf., Theorem 4.2),

E
[
vh | σh(T) ≥ (1− p)λ/p

]
· Pr

[
σh(T) ≥ (1− p)λ/p

]
≥ −4 ·E

[
σh(T) | σh(T) ≥ (1− p)λ/p

]
· Pr

[
σh(T) ≥ (1− p)λ/p

]
. (29)

Add Equations (27) to (29) and replace the relevant expressions using (25) and (26):

E [vh] ≥ Pr [h ∈ S imilar ∧ J 6= r] ·
(
γ

2
− 40 · α2

(1− p)λ/p

)
− 40 · 4αβ − 8αβ log(1/λ)− 8αβ.

Next, we lower-bound the quantity Pr [h ∈ S imilar ∧ J 6= r].

Pr [h ∈ S imilar ∧ J 6= r] ≥ Pr [h ∈ S imilar ∧ J 6= r ∧ ∃si(T) ≥ γ]

= Pr [J 6= r | h ∈ S imilar ∧ ∃si(T) ≥ γ] · Pr [h ∈ S imilar ∧ ∃si(T) ≥ γ]

≥ 1

6
· (Pr [∃si(T) ≥ γ]− Pr [h ∈ NonS imilar])

≥ 1

6
· (δ − β/2).

The last inequality follows from the fact that Pr [∃si(T) ≥ γ] ≥ δ and Pr [h ∈ NonS imilar] ≤
Pr
[
σh ≥ 2α

]
≤ β/2. In summary,

E [vh] ≥ δ − β/2
6

·
(
γ

2
− 40 · α2

(1− p)λ/p

)
− (168αβ + 8αβ log(1/λ)).

The last part of the claim follows from the inequalities below, holding for large enough r:

• δ − β

2
≥ 31

32
· δ, since β ≤

√
p

1−p ·
δ
16 and p ≤ 1/2.

• γ

2
− 40α2p

λ(1− p)
≥ γ

4
, since α2 ≤ γλ

64 log(r) ·
1−p
p .

• 168αβ + 8αβ log(1/λ) ≤ 8αβ log(r) ≤ γδ

32
, since the leading term in the far left summand

is 4αβ log(r) (because of the square root) and αβ ≤ γδ
256 log(r) .

We conclude that E [vh] ≥ γδ
25 −

γδ
32 ≥

γδ
125 . �

24

5 Biasing Coin-Flipping Protocols

In this section we prove our main result, an almost optimal attack on many-party coin-flipping
protocols.

Theorem 5.1 (Main theorem). There exists a fail-stop adversary A such that the following holds.
Let Π be a correct n-party r-round coin-flipping protocol, and let k ∈ N be the smallest integer such
that

(
n
k

)
≥ r log(r)2k. Then, there exists a party P in Π such that AΠ controlling all parties but P

biases the output of P by Ω(1/
√
r log(r)k). The running time of AΠ is polynomial in the running

time of Π and nk, and it uses oracle only access to Π’s next-message function.

Remark 5.2 (Interesting choice of parameters). Note that
√
n ≥ 2 log(r)2 implies

(
n√
n

)
≥
√
n
√
n ≥

2
√
n log(r)2

√
n ≥ r log(r)2

√
n, and therefore there exists k ∈ {1, . . . ,

√
n} satisfying the hypothesis of

the theorem. On the other hand, if
√
n < 2 log(r)2, then it is easy to see that either such k does

not exist, or log(r)k ≥
√
r and in this case Cleve [11]’s bound overtakes and our theorem is trivial.

Let n′ = bn/sc, for some s < n/2. By noting that any n-party r-round coin-flipping protocol
is, in particular, an n′-party r-round coin-flipping protocol, the theorem below follows Theorem 5.1
by simple reduction.

Theorem 5.3 (Main theorem, fewer corruptions variant,). Let Π be a correct n-party r-round coin-
flipping protocol and let n′ = bn/sc, for some s < n/2. There exists a fail-stop adversary A such

that the following holds. Let k ∈ N be the smallest integer such that
(
n′

k

)
≥ r log(r)2k. Then, there

exists parties P1, . . . ,Ps in Π such that AΠ controlling all parties but P1, . . . ,Ps biases the output
of P1, . . . ,Ps by Ω(1/

√
r log(r)k). The running time of AΠ is polynomial in the running time of Π

and nk, and it uses oracle only access to Π’s next-message function.8

For presentation purposes, we will prove our theorem for the special case of non-uniform ppt
Turing machines. Later, in Section 5.5, we show how to handle the general case. In Sections 5.1
to 5.4, we prove the following weaker variant of Theorem 5.1.

Theorem 5.4 (Main theorem, non-uniform adversaries variant). There exists a fail-stop adversary
A such that the following holds. Let Π be a correct n-party r-round coin-flipping protocol, and let
k ∈ N be the smallest integer such that

(
n
k

)
≥ r log(r)2k. Then, there exists a party P in Π and

a string adv ∈ {0, 1}∗ such that AΠ(adv) controlling all parties but P biases the output of P by
Ω(1/

√
r log(r)k). The running time of AΠ is polynomial in the running time of Π and nk, and it

uses only oracle access to Π’s next-message function.

Proving Theorem 5.4. Our proof follows the high-level description given in the introduction.
Recall that a backup value associated with a subset of parties with respect to a given round of a
protocol execution is the common output these parties would output if all other parties prematurely
abort in this round round. More formally,

Notation 5.5. We identify the set [n] with the parties of the n-party protocol in consideration.
We refer to subset of parties (i.e., subset of [n]) as tuples, and denote sets of such tuples using

“blackboard bold” (e.g., S) rather than calligraphic. For a tuple subset S ⊆
([n]
k

)
and h ∈ [n], let

S(h) = {U ∈ S : h ∈ U}, i.e. S(h) is the set of tuples in S that contain h, and S \ h = S \ S(h).

8We require s < n/2, otherwise the resulting protocol has an honest majority, and standard MPC techniques
would foil the attack.

25

Definition 5.6 (Backup values). The following definitions are with respect to a fixed honest exe-
cution of an n-party, r-round correct protocol (determined by the parties’ random coins). The ith

round backup value of a subset of parties U ⊆ [n] at round i ∈ [r], denoted Bckp(U , i), is defined as
the common output the parties in u would output, if all other parties abort in the ith round (set to
⊥ if the execution has not reached this round with all parties of U alive). The average backup value
of a tuples subset of S, is defined by AvgBckp(S, i) = 1

|S|
∑
U∈S Bckp(U , i). Furthermore, for every S,

we define the random variables BS
1 , . . . , B

S
r to denote the value of AvgBckp(S, 1), . . . ,AvgBckp(S, r)

in a random execution of Π.

Back to the informal proof-sketch. For a subset of parties S ⊆ [n], consider the aver-
age backup value of the tuples in S1 = Sk, i.e. BS1

1 , . . . , BS1
r , where BS1

i denotes the value of
AvgBckp(S1, i) in a random execution of Π. Let X0, . . . , Xr be the Doob-like sequence defined by

Xi = E
[
out | BS1

i , Xi−1,
∑

j≤i(Xj −Xj−1)2
]
. It is easy to see that X0, . . . , Xr is a SoS-augmented

weak martingale. In Section 3, we showed that such sequences have at least one 1/
√
r-gap between

consecutive variables, with constant probability. In turn, such a gap enables a 1/
√
r-attack, unless

the sequence BS2
1 , . . . , BS2

r for S2 = Sk−1×S, and the above sequence BS1
1 , . . . , BS1

r are non-similar :
there is a 1/

√
r-gap between BS2

i and BS2
i in some round i. If so, we can attempt to exploit the non-

similarity by applying our differential privacy-based attack, dubbed the oblivious sampling attack,
in the spirit of the oblivious sampling experiment described in Section 4. In order for the latest
attack to achieve the desired bias, we require that for any two parties h, h′ ∈ [n], the projection

of the sequence BS1
1 , . . . , BS1

r to h and h′, defined by B
S1(h)
1 , . . . , B

S1(h)
r and B

S1(h′)
1 , . . . , B

S1(h′)
r ,

respectively, yields similar sequences (and the same for S2). If not, i.e. there is a pair of parties h,

h′ ∈ H and z ∈ {1, 2} such that B
Sz(h)
1 , . . . , B

Sz(h)
r and B

Sz(h′)
1 , . . . , B

Sz(h′)
r are non similar, then we

can invoke the oblivious sampling attack with S̃1 = Sz(h) and S̃2 = Sz(h′), which yields the desired
bias, as long as all relevant pairs of parties induce projected sequences that are similar. If not, we
can find another pair of parties that breaks our requirement, i.e. similarity, and repeat the process.

The iterative process described above terminates by finding a non-similar pair of tuple-sets
(S′1, S′2) such that, either every projection is similar, and thus we can apply the oblivious sampling
attack, or, S′1 and S′2 consist of tuples in which all-but-one parties are fixed, i.e. every projection
describes the distribution of a single bit. If so, we can apply a simple attack that we call the
singletons attack. We refer to the “level” where the process stops as the nugget of Π.

The actual proof is significantly more complicated, as we have to use a different similarity
measure for every level, and we have to make sure the projected sets of tuples have the right size.

We formally prove the theorem using the following four lemmas, proved in Sections 5.1 to 5.4.
Lemma 5.9 state that any protocol has a nugget (formally defined in Definition 5.8), where Lem-
mas 5.10 to 5.12 state that there is an effective attack, for all possible values of the nugget.

Notation 5.7. Let coefn(k, `) = (n−1)·(n−2)·...·(n−k+`)
(k−1)·(k−2)...·` , letting coefn(k, k) = 1. For r ∈ N, let

R(r) = {1, 1 + 1/r, 1 + 2/r, 1 + 3/r . . . , r}. We remark that |R| = r(r − 1) + 1.

Definition 5.8 (The Nugget). Let Π be an n-party r-round coin-flipping protocol, and let k ∈ N be
the smallest integer such that

(
n
k

)
≥ r log(r)2k. Index k∗ ∈ [k + 1] is a nugget for Π, if there exists

ρ∗ ∈ R(r), set H ⊆ [n], and tuple sets S1, S0 ⊆
(
n
k

)
such that the following holds.

For a tuple-set S ⊆ 2[n] and i ∈ [r], let BS
i denote the value of AvgBckp(S, i) in a random

execution of Π. The following holds according to the value of k∗:

26

k∗ = 1:

1. Pr
[
maxi∈[r]

∣∣∣BS1
i −B

S0
i

∣∣∣ ≥ ρ∗

256
√
r
· coefn(k,k∗)1/2

(64 log(r))k−k
∗

]
≥ 1

2ρ∗ log(r) ·
64−k+k

∗

coefn(k,k∗)1/2
.

2. H ≥ n/3, |S1| = |S0| = |H|, and |Sz(h)| = 1 for every h ∈ H and z ∈ {0, 1}.

k∗ ∈ {2, . . . , k}:

1. Same as Item 1 for k∗ = 1.

2. For every h, h′ ∈ H, z, z′ ∈ {0, 1}, U ′ ∈ Sz and ρ ∈ R(r):

(a) Pr
[
maxi∈[r]

∣∣∣BSz(h)
i −BSz(h′)

i

∣∣∣ ≥ ρ
256
√
r
· coefn(k,k∗−1)1/2

(64 log(r))k−k
∗+1

]
≤ 1

2ρ log(r) ·
64−k+k

∗−1

coefn(k,k∗−1)1/2
.

(b) PrU←Sz [h ∈ U] = PrU←Sz [h′ ∈ U] ≤ 1
2 .

(c) PrU←Sz [h ∈ U] = PrU←Sz′ [h ∈ U].

(d) PrU←Sz [h /∈ U] /PrU←Sz [h ∈ U] ≥ 1
4 ·

n−k+k∗−1
k∗−1 .

(e) Prh←H,U←Sz(h) [U = U ′] = PrU←Sz [U = U ′] .

k∗ = k + 1:

1. S1(h) = ∅ for every h ∈ H.

2. Prh←H,U←S0(h) [U = U ′] = PrU←S0 [U = U ′] for every U ′ ∈ S0.

3. Pr
[
maxi∈[r]

∣∣∣BS0
i −B

S1
i

∣∣∣ ≥ ρ
256
√
r

]
≤ 1

2ρ log(r) for every ρ ∈ R(r).

Lemma 5.9. Let Π be an n-party r-round coin-flipping protocol, then Π has a nugget.

Lemma 5.10. There exists a fail-stop adversary A such that the following holds. Let Π be a
correct n-party r-round coin-flipping protocol, and let k ∈ N be the smallest integer such that(
n
k

)
≥ r log(r)2k.
Suppose Π admits a nugget k∗ = k + 1, then exists party h ∈ [n] and a string adv such that

AΠ(adv) controlling all parties but h biases the output of h by Ω(1/
√
r log(r)k−k

∗+1). The running
time of A is polynomial in the running time of Π and nk, and it uses only oracle access to Π’s
next-message function.

Lemma 5.11. Same as Lemma 5.10 with respect to k∗ ∈ {2, . . . , k}.

Lemma 5.12. Same as Lemma 5.10 with respect to k∗ = 1.

Proof of Theorem 5.4. Immediately follows from Lemmas 5.9, 5.13, 5.21 and 5.24. �

In the following we assume without loss of generality that r is larger than some constant to be
determined by the analysis. This latest assumption does not incur any loss of generality, and we
use it to make sure that the term 1/

√
r log(r)k−k

∗+1 dominates over other terms.

27

5.1 The Game Value Jump Attack

Lemma 5.13 (Restatement of Lemma 5.10). There exists a fail-stop adversary A such that the
following holds. Let Π be a correct n-party r-round coin-flipping protocol, and let k ∈ N be the
smallest integer such that

(
n
k

)
≥ r log(r)2k. Suppose there exist tuple sets S,S′ ⊆

([n]
k

)
and set of

parties H ⊆ [n], satisfying

1. S(h) = ∅ for every h ∈ H, where S(h) is defined according to Notation 5.5.

2. For every U ′ ∈ S′, Prh←H,U←S′(h) [U = U ′] = PrU←S′ [U = U ′].

3. Pr
[
maxi

∣∣∣BS
i −BS′

i

∣∣∣ ≥ ρ
256
√
r

]
≤ 1

2ρ log(r) , for every ρ ∈ {1, 1 + 1/r, . . . , r}, where BS
i = BS

i (Π)

is defined according to Definition 5.6.

Then there exists h ∈ H and as a string advice adv such that AΠ(adv) corrupting all parties but
h biases the output of h by Ω(1/

√
r).

Furthermore, the running time of AΠ(adv) is polynomial in the running time of Π and nk, and
only uses oracle access to Π’s next-message function.

5.1.1 The Game-Value Sequence

The cornerstone of the so-called game value jump attack is that the adversary computes the ex-
pected outcome of the protocol, referred to as the game-value and denoted Xi for round i. Then, at
every round i ∈ [e], she compares this value to the backup value at hand, and decides to abort if the
backup value deviates from the expected outcome of the protocol significantly. Next, we formally
define the game-value sequence and follow up with a discussion regarding some of its properties.

Define g : [0, 1]3 × {0, 1} 7→ {0, 1} by

g(x, y, y′,NoJump) =

{
NoJump if |y − x| < 1/64

√
r ∨ |y′ − x| < 1/64

√
r,

0 otherwise;
(30)

Definition 5.14 (Game-value sequence). Let X0 = E [out]. For i ∈ [r], define Xi such that

Xi = rndδ

(
E

[
out | BS

i , B
S
i−1, Xi−1,

∑
`<i

(X` −X`−1)2, Gi−1

])
,

where Gi = g(BS
i , B

S
i−1, Xi, Gi−1), letting G0 = 1 and g be defined according to Equation (30).

Notice that Xi, for i ∈ [r], is simply the discretized expected outcome of the protocol given a
“short” aggregated accounted of the history so far. Namely, each variable Xi is an approximation
of the expected outcome of the protocol given the two preceding points of the backup sequence BS

i

and BS
i−1, the previous game-value Xi−1 and the sum-of squares

∑
`<i(X`−X`−1)2, as well as a bit

Gi−1 indicating whether either BS
j or BS

j−1 deviated from the value of Xj by more than 1/64
√
r,

for some j < i− 1.

Remark 5.15 (Computing X1, . . . , Xr). Each Xi is fully determined by the index i and the value of
the 5-tuple (BS

i , B
S
i−1, Xi−1,

∑
`<i(X`−X`−1)2, Gi−1). Recall that nk ≥ r,

∣∣supp(BS
i)
∣∣ =

(
n
k

)
∈ O(nk)

28

and |supp(Xi)| = 1/δ, for every i ∈ [r]. Hence, there exists a table of size log(1/δ) · 2 ·
(
n
k

)2 · r2
δ3

,
such that the value of Xi, for all i ∈ [r], can be computed from BS

≤i using this table. Hereafter, we

fix δ = 1/200r and thus the table is described by a string of polynomial-size in nk.

We show that the sequenceX0, . . . , Xr satisfies the martingale property according to Definition 2.13.
Such sequences typically have large gaps which we will exploit in our attack.

Claim 5.16. The sequence X0, . . . , Xr is a SoS-augmented 2δ-weak martingale sequence, i.e. for
all i ∈ [r],

E

[
Xi | Xi−1,

∑
`<i

(Xi −Xi−1)2

]
∈ Xi−1 ± 2δ.

Proof. Fix i ∈ [r] and define X̃i = E
[
out | Bi, Bi−1, Xi−1,

∑
`<i(X` −X`−1)2, Gi−1)

]
, X̃i+1 =

E
[
out | Bi+1, Bi, Xi,

∑
`<i+1(X` −X`−1)2, Gi)

]
i.e. without rounding. By tower law (Fact 2.9),

E
[
X̃i+1 | Xi,

∑
`≤i(X` −X`−1)2

]
= E

[
out | Xi,

∑
`≤i(X` −X`−1)2

]
. Furthermore, by Fact 2.10

E
[
out | X̃i,

∑
`≤i(X` −X`−1)2

]
= X̃i. Consequently, since Xi is the rounded value of X̃i to the

closest δ-multiple, by Fact 2.11, E
[
out | Xi,

∑
`≤i(X` −X`−1)2

]
∈ Xi ± δ. Finally, since Xi+1 is

the rounded value of X̃i+1 to the closest δ-multiple, we deduce that

E

Xi+1 | Xi,
∑
`≤i

(X` −X`−1)2

 ∈ E

X̃i+1 | Xi,
∑
`≤i

(X` −X`−1)2

± δ
∈ E

out | Xi,
∑
`≤i

(X` −X`−1)2

± δ
∈ Xi ± 2δ.

�

By Corollary 3.4, since X0, . . . , Xr is a SoS-augmented 2δ-weak martingale sequence with X0 = 1/2,
Xr ∈ {0, 1}, and δ < 1/200r, it holds that

Pr

[
∃i ∈ [r] s.t. |Xi −Xi−1| ≥

1

4
√
r

]
≥ 1

20
. (31)

5.1.2 The Attack

We start with a high-level overview of the attack. The adversary biasing party h ∈ H, to be
chosen at random, towards zero is defined as follows (the attack biasing toward one is defined
analogously). After receiving the honest party messages for round i− 1, it computes the values of
yi = BS

i , yi−1 = BS
i−1, xi = Xi and gi = Gi, for Xi and Gi being according to Definition 5.14.

If yi−1 is below xi by more than 1/64
√
r, then it aborts all parties but a random tuple of S′

that contains h, without sending the ith-round messages of the aborting parties. The surviving
corrupted parties are instructed to terminate the protocol honestly.

29

If yi is below xi = Xi by more than 1/64
√
r, it aborts all parties but a random tuple in S′ that

contains h, after sending the ith-round messages of the aborting parties. The surviving corrupted
parties are instructed to terminate the protocol honestly.

The attacker is formally defined as follows.

Algorithm 5.17 (The martingale attack MartAttack).

Parameters: S, S′ ⊆
([n]
k

)
, z ∈ {0, 1}, honest party h ∈ [n] and a string adv ∈ {0, 1}∗.

Description:

1. Compute BS
1 according to the protocols specifications. If (−1)1−z ·(BS

1− 1
2) > 1/64

√
r, without

sending their 1st round messages, abort all parties except a random tuple in S′(h).

– The remaining corrupted parties are instructed to terminate the protocol honestly.

2. For i = 1, . . . , r:

(a) Upon receiving the ith round messages of h, compute BS
i , BS

i+1, Xi+1 and Gi using the
messages received so far and the string adv.

(b) If (−1)1−z ·(BS
i −Xi+1) > 1/64

√
r and Gi = 1, without sending their messages for round

i abort all parties except a random tuple in S′(h).

– The remaining corrupted parties are instructed to terminate the protocol honestly.

(c) If (−1)1−z · (BS
i+1−Xi+1) > 1/64

√
r and Gi = 1, after sending their messages for round

i, abort all parties except a random tuple in S′(h).

– The remaining corrupted parties are instructed to terminate the protocol honestly.

. .

Let MartAttack(S, S′, z, h, adv) denote the martingale attacker with parameters S,S′, z, h, adv. We
refer to the round in which the adversary instructs some parties in its control to abort as the
aborting round, set to r if no abort occurred.

5.1.3 Success probability of Algorithm 5.17.

Let S, S′ and H be as in Lemma 5.13, and let H denote an element of H chosen uniformly at
random. Following the discussion of Remark 5.15, let adv denote a string of size polynomial in nk

that fully describes the sequence X1, . . . , Xr that is defined according to Definition 5.14. We show
that either A1(H) = MartAttack(S,S′, 1, H, adv) or A0(H) = MartAttack(S,S′, 0, H, adv) succeeds in
obtaining the bias of Lemma 5.13.

Before proceeding with the proof, we introduce a last piece of notation. For z ∈ {0, 1}, let
Jz∗ denote the round-index where the adversary Az decided to abort certain parties, and let Jz

denote the round-index of the last messages sent by those aborting parties. Namely, in Step 2b of
Algorithm 5.17 we have Jz = Jz∗−1 = i and in Step 2c of Algorithm 5.17 we have Jz = Jz∗ = i+1.
If no abort occurred, Jz = Jz∗ = r.

Lemma 5.13 follows from the claims below.

Claim 5.18. Pr
[
J1 6= r

]
+ Pr

[
J0 6= r

]
≥ 1/20.

Claim 5.19. For z ∈ {0, 1}, E [XJz∗] ∈ 1/2± 1
200r .

30

Claim 5.20. E
[
maxi |BS

i −BS′
i |
]
≤ 1/128

√
r, for r large enough.

Before proving each of these claims, we show how to combine them to obtain the lemma.

Proof of Lemma 5.13. By Claim 5.18, we may assume without loss of generality that Pr
[
J1 6= r

]
≥

1/10. Next, we compute the bias caused by the attacker A1(H). By Item 2 of Lemma 5.13, the
output of the honest party is identically distributed with BS′

J1 . Compute

E
[
BS′
J1

]
− 1/2 ≥ E

[
BS
J1

]
− 1/2−E

[
BS
J1

]
+ E

[
BS′
J1

]
≥ E

[
BS
J1

]
−E [XJ1∗]−E

[
max
i

∣∣∣BS
i −BS′

i

∣∣∣] · Pr
[
J1 6= r

]
− 1

200r
(32)

≥ Pr
[
J1 6= r

]
·
(

E
[
BS
J1 −XJ1∗ | J1 6= r

]
−E

[
max
i

∣∣∣BS
i −BS′

i

∣∣∣])− 1

200r
(33)

≥ Pr
[
J1 6= r

](1

64
√
r
− 1

128
√
r

)
− 1

200r

≥ 1

40
· 1

128
√
r
− 1

200r
.

Equation (32) follows from triangle inequality, union bound, Claim 5.19 and the fact that BS
r = BS′

r .
Equation (33) follows from Claim 5.20 and the fact that BS

J1 −XJ1∗ ≥ 1/64
√
r, whenever J1 6= r.

�

Proof of Claim 5.18. First, we lower-bound the probability of abort by the probability of having
a large increment in the X-sequence alone. For convenience, we introduce the following notation.
For z ∈ {0, 1}, let trigzi+1 denote the predicate (−1)1−z(BS

i −Xi+1) ≥ 1/64
√
r ∨ (−1)1−z(BS

i+1 −
Xi+1) ≥ 1/64

√
r and let trigz1 denote the predicate (−1)1−z(BS

1 − 1
2) ≥ 1/64. We remark that trigz`

denotes whether the attack biasing towards z ∈ {0, 1} is potentially “triggered” at round `. Write
trigi+1 = trig0

i+1 ∨ trig1
i+1. Recall that

Pr [Jz 6= r] = Pr

[
trigz1 ∨

r−1∨
i=1

(
Gi = 1 ∧ trigzi+1

)]
.

Thus, by union bound,

Pr
[
J0 6= r

]
+ Pr

[
J1 6= r

]
≥ Pr

[
trig1 ∨

r−1∨
i=1

(
Gi = 1 ∧ trigi+1

)]
.

Recall that Gi = 1 is equivalent to
∧i
j=1 ¬trigj ≡ ¬

(∨i
j=1 trigj

)
. It follows that

r−1∨
i=1

(
Gi = 1 ∧ trigi+1

)
≡

r−1∨
i=1

trigi+1 ∧ ¬

 i∨
j=1

trigj

≡

r−1∨
i=1

trigi+1.

31

We can thus lower-bound Pr
[
J0 6= r

]
+ Pr

[
J1 6= r

]
by Pr

[∨r−1
i=1 trigi+1

]
.

Pr
[
J0 6= r

]
+ Pr

[
J1 6= r

]
≥ Pr

[
trig1 ∨

r−1∨
i=1

trigi+1

]

= Pr

[∣∣∣BS
1 −X1

∣∣∣ ∨ r−1∨
i=1

(∣∣∣BS
i −Xi+1

∣∣∣ ≥ 1/64
√
r ∨

∣∣∣BS
i+1 −Xi+1

∣∣∣ ≥ 1/64
√
r
)]

= Pr

[
r−1∨
i=1

(∣∣∣BS
i −Xi

∣∣∣ ≥ 1/64
√
r ∨

∣∣∣BS
i −Xi+1

∣∣∣ ≥ 1/64
√
r
)]

≥ Pr

[
r−1∨
i=1

|Xi+1 −Xi| ≥ 1/32
√
r

]

By Equation (31), we conclude that Pr
[∨r−1

i=1 |Xi+1 −Xi| ≥ 1/32
√
r
]
≥ 1/20.

�

Proof of Claim 5.19. Recall that δ = 1/200r and Xi =
rndδ(E

[
out | BS

i , B
S
i−1, Xi−1,

∑
`<i(X` −X`−1)2, Gi

]
). For conciseness, write agti for the 5-tuple

(BS
i , B

S
i−1, Xi−1,

∑
`<i(X` −X`−1)2, Gi). We compute E [XJz∗] =

∑
i E [Xi | Jz∗ = i] · Pr [Jz∗ = i].

Let us focus on the term E [Xi | Jz∗ = i].

E [Xi | Jz∗ = i] = E [rndδ(E [out | agti]) | Jz∗ = i] (34)

∈ E [E [out | agti] | Jz∗ = i]± δ.

Since agti fully determines Xi, B
S
i , BS

i−1 and Jz∗ ≥ i, it follows that agti fully determines Jz∗ = i,
which implies that

E [E [out | agti] | Jz∗ = i] = E [out | Jz∗ = i] . (35)

Since, by assumption, E [out] = 1/2, it follows that E [XJz∗] ∈
∑

i∈r E [out | Jz∗ = i] ·Pr [Jz∗ = i]±
δ = E [out]± δ = 1/2± 1

200r . �

Proof of Claim 5.20. From the hypothesis of Lemma 5.13, it holds that

∀ρ ∈ {1, 1 + 1/r, . . . , r} , Pr

[
max
i∈[r]

∣∣∣BS
i −BS′

i

∣∣∣ ≥ ρ · 1

256
√
r

]
≤ 1

2ρ log(r)
.

32

For convenience, write Bmax = maxi∈[r]

∣∣∣BS
i −BS′

i

∣∣∣ and let us compute E [Bmax].

E [Bmax] = E
[
Bmax | Bmax ≤ 1/256

√
r
]
· Pr

[
Bmax ≤ 1/256

√
r
]

+

log(256
√
r)∑

j=1

E
[
Bmax | 256

√
r ·Bmax ∈ [2j−1, 2j]

]
· Pr

[
256
√
r ·Bmax ∈ [2j−1, 2j]

]
≤ 1

256
√
r

+

log(256
√
r)∑

j=1

2j

256
√
r
· 1

2j−1 · 2 log(r)

=
1

256
√
r

+
1

256
√
r log(r)

·
(

1

2
· log(r) + log(256)

)
≤ 1

128
√
r
,

where the last inequality holds for large enough r. �

5.2 The Differential Privacy Based Attack

Lemma 5.21 (Restatement of Lemma 5.11). There exists a fail-stop adversary A such that the fol-
lowing holds. Let Π be a correct n-party r-round coin-flipping protocol, and let k ∈ N be the smallest
integer such that

(
n
k

)
≥ r log(r)2k. Suppose there exists k∗ ∈ {2, . . . , k}, ρ∗ ∈ {1, 1 + 1/r, . . . , r},

tuple sets S1 and S0 ⊆
([n]
k

)
and party set H ⊆ [n], such that

• For every h, h′ ∈ H, z, z′ ∈ {0, 1} and U ′ ∈ Sz:

– PrU←Sz [h ∈ U] = PrU←Sz [h′ ∈ U] ≤ 1
2 .

– PrU←Sz [h ∈ U] = PrU←Sz′ [h ∈ U].

– PrU←Sz [h /∈ U] /PrU←Sz [h ∈ U] ≥ 1
4 ·

n−k+k∗−1
k∗−1 .

– Prh←H,U←Sz(h) [U = U ′] = PrU←Sz [U = U ′] .

• Letting BSz
i = BSz

i (Π) and coefn(k, ·) be according is according to Definition 5.6 and Nota-
tion 5.5:

Pr

[
max
i∈[r]

∣∣∣BS1
i −B

S0
i

∣∣∣ ≥ ρ∗

256
√
r
· coefn(k, k∗)1/2

(64 log(r))k−k
∗

]
≥ 1

2ρ∗ log(r)
· 64−k+k∗

coefn(k, k∗)1/2
. (36)

• Letting B
Sz(h)
i = B

Sz(h)
i (Π) be according to Definition 5.6, for every z ∈ {0, 1}, h, h′ ∈ H and

ρ ∈ {1, 1 + 1/r, . . . , r}, it holds that:

Pr

[
max
i∈[r]

∣∣∣BSz(h)
i −BSz(h′)

i

∣∣∣ ≥ ρ

256
√
r
· coefn(k, k∗ − 1)1/2

(64 log(r))k−k
∗+1

]
≤ 1

2ρ log(r)
· 64−k+k∗−1

coefn(k, k∗ − 1)1/2
.

(37)

Then, there exists h ∈ H such that AΠ(S1, S0,H, k∗, ρ∗) corrupting all parties but h biases the output
of h by Ω(1/

√
r log(r)k−k

∗+1).
Furthermore, the running time of AΠ(S1, S0,H, k∗, ρ∗) is polynomial in the running time of Π

and nk, and it uses only oracle access to Π’s next-message function.

33

5.2.1 The Attack

We start with a high-level overview of the attack using the notation of Lemma 5.21.
The adversary corrupts all parties except a random party h ∈ H. After receiving the honest

party ith message, it adds Laplace noise to the quantity B
S1\h
i −BS0\h

i , i.e., the difference between
the average backup values for those tuples that do not contain h. If the resulting quantity is above
some value γ, the adversary aborts all parties except a random tuple in Sz(h), for z ∈ {0, 1} being
the direction of the bias the adversary wishes to attack towards9.

Since, by assumption, the values B
Sz\h
i and B

Sz(h)
i are not too far apart, adding Laplace noise

“decorrelates” the abort decision from the identity of the honest party party h. Thus, B
Sz(h)
i is

roughly distributed like the mean BSz
i (and by extension B

Sz\h
i as well). Therefore, either the

adversary biasing towards one or the adversary biasing towards zero succeeds in its attack, since

either E
[
BS1
J

]
> 1/2 or E

[
BS0
J

]
< 1/2, where J denote the aborting round.

The formal description of the attack is given below.

Algorithm 5.22 (DpAttack: The differential privacy based attack).

Parameters: S1, S0 ⊆
(
n
k

)
, z ∈ {0, 1}, party h ∈ [n] and γ ∈ [0, 1].

Notation: Let λ = γ/4 log(r).

Description:

1. For i = 1, . . . , r:

(a) Upon receiving the ith-round messages of h, compute B
S1\h
i and B

S0\h
i .

(b) Sample νi ← Lap(λ).

(c) If B
S1\h
i − BS0\h

i + νi > γ, without sending their messages for round i, abort all parties
except a random tuple in Sz(h).

– The remaining corrupted parties are instructed to terminate the protocol honestly.
. .

Let DpAttack(S1, S0, z, h, γ) denote the above attacker with parameters S1, S0, z, h, γ. We refer
to the round in which the adversary instructs some parties in its control to abort as the aborting
round, set to r is not abort happen.

5.2.2 Success probability of Algorithm 5.22

Let H be a uniform element of H, and let γ = ρ∗

256
√
r
· coefn(k,k∗)1/2

(64 log(r))k−k
∗ . We show that either A1(H) =

DpAttack(S1, S0, 1, H, γ) or A0(H) = DpAttack(S1, S0, 0, H, γ) succeeds in obtaining the bias of

Lemma 5.21. Let J denote the smallest round i such that B
S1\H
i −BS0\H

i + Lap(λ) ≥ γ, and J = r
if no such round exists. Lemma 5.21 follows from the next claim.

Claim 5.23. E
[
B

S1(H)
J −BS0(H)

J

]
≥ 1

216
· 1√

r log r
·
(

1
642 log(r)

)k−k∗
.

9The choice of γ and of the Laplace parameter is dictated by the magnitude of the gap between BS1
i and BS0

i as
stated in Equation (36).

34

Proof of Lemma 5.21. If E
[
B

S1(H)
J −BS0(H)

J

]
≥ ε, then either E

[
B

S1(H)
J

]
≥ 1/2 + ε/2 or

E
[
B

S0(H)
J

]
≤ 1/2 − ε/2. By using the appropriate ε from Claim 5.23 and observing that, un-

der adversary Az, the honest party’s output is identically distributed with B
Sz(H)
J , we obtain the

desired statement. �

Proof of Claim 5.23. Define δ = 1
2 ·

1
2ρ∗ log(r) ·

64−k+k
∗

coefn(k,k∗)1/2
, α = γ

32 log(r) ·
√
n−k+k∗−1√

k∗−1
and

β = δ
16 ·

√
k∗−1√

n−k+k∗−1
. From the hypothesis of Lemma 5.21 and the definition of α, β, γ and δ, it

holds that Pr
[
maxi

∣∣∣BS1
i −B

S0
i

∣∣∣ ≥ γ] ≥ 2δ and Pr
[
maxi

∣∣∣BSz(h)
i −BSz

i

∣∣∣ ≥ ρ · α/2ρ∗] ≤ β · ρ∗/2ρ,

for every z ∈ {0, 1}, h ∈ H and ρ ∈ R. Thus, by triangle inequality, union bound and the fact that
ρ ∈ R can be chosen arbitrarily, the following inequalities hold without loss of generality.

Pr

[
max
i
BS1
i −B

S0
i ≥ γ

]
≥ δ, (38)

∀h ∈ H,∀ρ ∈ R : Pr

[
max
i

∣∣∣(BS1(h)
i −BS0(h)

i

)
−
(
BS1
i −B

S0
i

)∣∣∣ ≥ ρ · α] ≤ β/ρ. (39)

Let τ denote an arbitrary transcript of Π and let shi (τ) and s
\h
i (τ) denote the value of B

S1(h)
i −BS0(h)

i

and B
S1\h
i − BS0\h

i , respectively, for transcript τ . Further define si(τ) = 1
n

∑
h∈H s

h
i (τ), and, for

arbitrary h ∈ H and z ∈ {0, 1}, let p = PrU←Sz [h ∈ U]. We remark that the value of p does not
depend on h or z. Next, by the definition of shi (τ) and the hypothesis of the theorem, we observe
that

1. p · shi (τ) + (1− p) · s\hi (τ) = si(τ), and

2. 1−p
p ≥

1
4 ·

n−k+k∗−1
k∗−1 .

By definition, the adversary Az aborts (some parties) if it finds out that s
\h
i (τ) + Lap(λ) ≥ γ.

Let T be the value of τ , and J be the aborting round in a random execution of Π in which the
adversary Az attacking the honest party H. Using the terminology of Section 4, the value of sHJ (T)
is equal to the output of an oblivious sampling experiment with parameters H,

{
shi (τ ← T)

}
h,i

, γ,

p, λ. From the choice of α and β, and under the guarantee of Equation (39), Corollary 4.3 yields
that E

[
sHJ (T)

]
≥ γδ/125− 1

2r ∈ Ω(1/
√
r log(r)k

∗−k+1), for r large enough.
�

5.3 The Singletons Attack

Lemma 5.24 (Restatement of Lemma 5.12). There exists a fail-stop adversary A such that the
following holds. Let Π be a correct n-party r-round coin-flipping protocol, and let k ∈ N be the
smallest integer such that

(
n
k

)
≥ r log(r)2k. Suppose there exists ρ∗ ≥ 1, tuple sets S1,S0 ⊆

([n]
k

)
and party set H ⊆ [n] such that:

1. H ≥ n/3 and |S0| = |S1| = |H|.

For every h ∈ H and z ∈ {0, 1}:

35

2. |Sz(h)| = 1, letting Sz(h) be according to Notation 5.5.

3. Pr

maxi∈[r]

∣∣∣BS1
i −B

S0
i

∣∣∣ ≥ ρ∗

256
√
r
·

(
n−1
k−1

)1/2
(64 log(r))k−1

 ≥ 1
2ρ∗ log(r) ·

64−k+1

(n−1
k−1)

1/2

letting BSz
i be according to Definition 5.6.

Then, there exists h ∈ H such that AΠ(S1, S0,H, k∗, ρ∗) corrupting all parties but h, biases the
output of h by Ω(1/

√
r log(r)k).

Furthermore, the running time of AΠ(S1, S0,H, k∗, ρ∗) is polynomial in the running time of Π
and nk, and it uses only oracle access to Π’s next-message function.

5.3.1 The Attack

We start with a high-level overview of the attack. The adversary biasing a party h ∈ H, to be
chosen at random, towards zero is defined as follows (the attack biassing toward one is defined
analogously). Before the protocols starts, the adversary samples half of the tuples in S1 and S0 not
containing h, denoted E1 and E0 respectively. Upon receiving the ith message from h, it computes
the difference between the average backup values of the tuples in E1 and E0, denoted BE1

i − B
E0
i .

If the resulting quantity is above 3γ/4, it aborts all parties except the unique tuple in S0(h).10

For the attack to go through, it is required that BEz
i and BSz

i are not too far apart. Thankfully,
standard concentration bounds guarantee that to be the case.

The formal description of the attack is given below.

Algorithm 5.25 (The singletons attacker SingAttack).

Parameters: tuple subsets S1,S0 ⊆
(
n
k

)
, z ∈ {0, 1}, honest party h ∈ [n] and γ ∈ [0, 1].

Description:

1. For z ∈ {0, 1}, let Ez ⊆ Sz \ h denote random subset of size |Sz| /2.

2. For i = 1, . . . , r:

(a) Upon receiving the ith-round messages of h, compute BE1
i and BE0

i .

(b) If BE1
i −B

E0
i > 3γ/4, without sending their messages for round i, abort all parties except

the unique random tuple in Sz(h).

– The remaining corrupted parties are instructed to terminate the protocol honestly.
. .

Let SingAttack(S1, S0, z, h, γ) denote the singletons attacker with parameters S1, S0, z, h. We refer
to the round in which the adversary instructs some parties in its control to abort as the aborting
round, set to r is not abort happen.

10The choice of γ is dictated by the magnitude of the gap between BS1
i and BS0

i as stated in Assumption (3).

36

5.3.2 Success probability of Algorithm 5.25

Let H be a uniform element of H. Let γ = α/
√
n letting α = ρ∗

256
√
r
·
√
n·(n−1

k−1)
1/2

(64 log(r))k−1 . We show

that either A1(H) = SingAttack(S1, S0, 1, H, γ) or A0(H) = SingAttack(S1,S0, 0, H, γ) succeeds in
obtaining the bias of Lemma 5.24. Let J denote the smallest round i such that BE1

i −B
E0
i ≥ 3γ/4,

and J = r if no such round exists. Furthermore, define β = 1
2ρ∗ log(r) ·

64−k+1

(n−1
k−1)

1/2 , let Gr,α denote

the event maxi

{
BS1
i −B

S0
i

}
≥ α/

√
n, let Er,α denote the event (maxi

{∣∣∣BE1
i −B

S1
i

∣∣∣} ≥ α/8√n)∨

(maxi

{∣∣∣BE0
i −B

S0
i

∣∣∣} ≥ α/8√n). Lemma 5.24 follows from Claims 5.26 and 5.27.

Claim 5.26. Pr [J 6= r | Gr,α ∧ ¬Er,α] = 1.

Claim 5.27. Pr [Er,α] ≤ 4r · exp(−α2/192) ≤ 1
r , for r large enough.

We prove Lemma 5.24 assuming the two claims above.

Proof of Lemma 5.24. First we observe that, under adversary Az(H), the honest party’s output

is identically distributed with B
Sz(H)
J . Thus, like in the proof of Lemma 5.21, it suffices to lower-

bound E
[
B

S1(H)
J −BS0(H)

J

]
. By the choice of α and β and Item 3 of Lemma 5.24, it holds that

Pr [Gr,α] ≥ β. Consequently,

E
[
B

S1(H)
J −BS0(H)

J

]
≥ E

[
B

S1(H)
J −BS0(H)

J | Gr,α ∧ ¬Er,α
]
· Pr [Gr,α ∧ ¬Er,α]− Pr [Er,α]

≥
(

E
[
BE1
J −B

E0
J | Gr,α ∧ ¬Er,α

]
− α

4
√
n

)
· Pr [Gr,α ∧ ¬Er,α]− Pr [Er,α]

≥ 1

2
· α√

n
· Pr [Gr,α]− 2 · Pr [Er,α] ≥ αβ

2
√
n
− 2 · Pr [Er,α]

≥ 1

1024
√
r log(r)

·
(

1

642 · log(r)

)k−1

− 2

r
.

�

Proof of Claim 5.26. If Er,α did not occur, then BE1
i −B

E0
i differs from BS1

i −B
S0
i by at most

α
4
√
n

. If the latter is greater than α/
√
n, then the former is greater than 3α

4
√
n

= 3γ/4.

Proof of Claim 5.27. By assumption,
(
n
k

)
≥ r log(r)2k. It follows that

α =
ρ∗

256
√
r
·
√
k ·
(
n
k

)1/2
(64 log(r))k−1

≥ ρ∗
√
k · log(r)

26k+8
.

Thus, by noting that |H| ≥ n/3, apply union bound and Hoeffding’s inequality (Fact 2.3)11, and
deduce that

Pr [Er,α] ≤ 4r · exp(−α2/192) ≤ 4r · exp(−2 log(2r)),

where the last inequality holds for r large enough, since exp(−α2/192) ≤ eO(− log(r)2).

11Hoeffding’s inequality holds for any fixing of the random inputs, and thus it also holds over the probability space
of those random inputs

37

5.4 Proof of Lemma 5.9

Notation 5.28. The concatenation of two tuple subsets S1,S0 ⊆ 2[n], denoted S1‖S0, is defined by
{U1 ∪ U0 : U1 ∈ S1,U0 ∈ S0}.

For reference, we recall of the nugget Definition 5.8.

Definition 5.29 (Restatement of Definition 5.8). Let Π be an n-party r-round coin-flipping proto-
col, and let k ∈ N be the smallest integer such that

(
n
k

)
≥ r log(r)2k. Index k∗ ∈ [k + 1] is a nugget

for Π, if there exists ρ∗ ∈ R(r), set H ⊆ [n], and tuple sets S1,S0 ⊆
(
n
k

)
such that the following

holds.
For a tuple-set S ⊆ 2[n] and i ∈ [r], let BS

i denote the value of AvgBckp(S, i) in a random
execution of Π. The following holds according to the value of k∗:

k∗ = 1:

1. Pr
[
maxi∈[r]

∣∣∣BS1
i −B

S0
i

∣∣∣ ≥ ρ∗

256
√
r
· coefn(k,k∗)1/2

(64 log(r))k−k
∗

]
≥ 1

2ρ∗ log(r) ·
64−k+k

∗

coefn(k,k∗)1/2
.

2. H ≥ n/3, |S1| = |S0| = |H|, and |Sz(h)| = 1 for every h ∈ H and z ∈ {0, 1}.

k∗ ∈ {2, . . . , k}:

1. Same as Item 1 for k∗ = 1.

2. For every h, h′ ∈ H, z, z′ ∈ {0, 1}, U ′ ∈ Sz and ρ ∈ R(r):

(a) Pr
[
maxi∈[r]

∣∣∣BSz(h)
i −BSz(h′)

i

∣∣∣ ≥ ρ
256
√
r
· coefn(k,k∗−1)1/2

(64 log(r))k−k
∗+1

]
≤ 1

2ρ log(r) ·
64−k+k

∗−1

coefn(k,k∗−1)1/2
.

(b) PrU←Sz [h ∈ U] = PrU←Sz [h′ ∈ U] ≤ 1
2 .

(c) PrU←Sz [h ∈ U] = PrU←Sz′ [h ∈ U].

(d) PrU←Sz [h /∈ U] /PrU←Sz [h ∈ U] ≥ 1
4 ·

n−k+k∗−1
k∗−1 .

(e) Prh←H,U←Sz(h) [U = U ′] = PrU←Sz [U = U ′] .

k∗ = k + 1:

1. S1(h) = ∅ for every h ∈ H.

2. Prh←H,U←S0(h) [U = U ′] = PrU←S0 [U = U ′] for every U ′ ∈ S0.

3. Pr
[
maxi∈[r]

∣∣∣BS0
i −B

S1
i

∣∣∣ ≥ ρ
256
√
r

]
≤ 1

2ρ log(r) for every ρ ∈ R(r).

Next we prove that any protocol admits a nugget.

Proof of Lemma 5.9. We prove the lemma by explicitly constructing the sets (in Figure 1). The

algorithm stops as soon as it finds S1, S0 and H such that maxi

∣∣∣BSz(h)
i −BSz(h)

i

∣∣∣ is small with the

probability specified by Figure 1, for every z ∈ {0, 1} and h ∈ H. Furthermore, if k∗ < k, the

construction guarantees that maxi

∣∣∣BS1
i −B

S0
i

∣∣∣ is large with probability specified by Figure 1. We

verify that all the other technical requirements of Lemma 5.9 are met. By construction, there exists

38

Q ⊆ P of size (k − k∗ − 1), parties p1, p0 ∈ (P \ Q) and tuple set C ∈ {A1,A0}, such that Sz and
H are of the form

Sz =

{(P
k−1

)
‖
(Az

1

)
if k∗ ∈ {k, k + 1}

Q‖{pz} ‖
(P\(Q∪{pz})

k∗−1

)
‖
(C

1

)
if k∗ ∈ {1, . . . , k − 1}

H =

A0 if k∗ ∈ {k + 1}
P \ (Q∪ {p1, p0}) if k∗ ∈ {2, . . . , k}
C if k∗ = 1

It is easy to verify that the case k∗ = k + 1. For k∗ = 1, we remark that because Sz is of the
form Q‖{pz} ‖

(H
1

)
, for some fixed set of parties Q and party pz, it is immediate that |Sz(h)| = 1,

for every h ∈ H. It remains to verify the conditions for k∗ ∈ {2, . . . , k}. We remind the reader that
k∗ ≤ k <

√
n. Clearly, for every h ∈ H, PrU←Sz [h ∈ U] = k∗−1

|H| or k∗−1
|H|+1 ≤

1
2 , and PrU←Sz [h ∈ U] =

PrU←Sz′ [h ∈ U]. Furthermore,

Pru←Sz [h /∈ u]

Pru←Sz [h ∈ u]
≥ 1− (k∗ − 1)/ |H|

(k∗ − 1)/ |H|
=
|H|
k∗ − 1

− 1

≥ n/3− (k − k∗ − 1)− 2

k∗ − 1
− 1 =

n/3− k + k∗ − 1

k∗ − 1
− 1

≥ 1

4
· n− k + k∗ − 1

k∗ − 1
,

where the last follows from n/3 ≥ 4k + 1, for n large enough since
√
n > k. Finally,

Prh←H,U←Sz(h) [U = U ′] = PrU←Sz [U = U ′] follows immediately from the definition Sz and H. �

39

Let A1,A0,P ⊂ [n] denote an arbitrary equal-size partition of [n] (i.e., A1, A0 and P are pairwise
disjoint and A1 ∪ A0 ∪ P = [n], without loss of generality n is a multiple of 3).

Define k∗ ∈ [k + 1], S1,S0 ⊆
([n]
k

)
,H ⊆ [n] and ρ∗ ∈ R(r) by the following iterative process:

1. Let Sk+1
1 =

(A1

1

)
‖
(P
k−1

)
, Sk+1

0 =
(A0

1

)
‖
(P
k−1

)
, Hk+1 = A0.

2. Let Sk1 =
(A1

1

)
‖
(P
k−1

)
, Sk0 =

(A0

1

)
‖
(P
k−1

)
, Hk = P, and ck1 = ck0 = ∅.

3. If ∃ρ ∈ R(r) such that Pr

[
maxi∈[r]

∣∣∣∣BSk+1
1
i −BSk+1

0
i

∣∣∣∣ ≥ ρ
256
√
r

]
≥ 1

2ρ log(r) :

(a) Set ρk = ρ.

(b) For ` = k, . . . , 2:

If ∃z ∈ {1, 0}, h, h′ ∈ H` \ c`1 ∪ c`0, ρ ∈ R(r) such that

Pr

[
max
i∈[r]

∣∣∣BS`z(h)
i −BS`z(h′)

i

∣∣∣ ≥ ρ

256
√
r
· coefn(k, `− 1)1/2

(64 log(r))k−`+1

]
≥ 1

2ρ log(r)
· 64−k+`−1

coefn(k, `− 1)1/2

define:

i. S`−1
1 = S`z(h), S`−1

0 = S`z(h′),
ii. H`−1 = H` \ c`z,

iii. c`−1
1 = {h} and c`−1

0 = {h′},
iv. ρ`−1 = ρ.

Else, define k∗ = `, ρ∗ = ρ`, (S1,S0) = (S`1, S`0) and H = Hk∗ \ c1
k∗ ∪ c0

k∗ .

(c) If k∗ was not assigned, set k∗ = 1, ρ∗ = ρ1, (S1,S0) = (S1
1,S1

0), and let H = A1 if S1

and S0 are obtained as a concatenation of A1 with some other tuple set, and H = A0

otherwise.

Else, let k∗ = k + 1, ρ∗ = 1 and (S1, S0,H) = (Sk+1
1 , Sk+1

0 ,Hk+1).

Figure 1: The Nugget

5.5 Uniform Adversaries

In this section, we show how to replace the nonuniform adversary with a uniform one. For reference,
we restate our main theorem.

Theorem 5.30 (Restatement of Theorem 5.1). There exists a fail-stop adversary A such that
the following holds. Let Π be a correct n-party r-round coin-flipping protocol, and let k ∈ N be
the smallest integer such that

(
n
k

)
≥ r log(r)2k. Then, there exists a party P in Π such that AΠ

controlling all parties but P biases the output of P by Ω(1/
√
r log(r)k). The running time of AΠ

is polynomial in the running time of Π and nk, and it uses oracle only access to Π’s next-message
function.

There are two barriers when emulating the proof of the nonuniform case; the first one is finding

40

uniformly the nugget and its parameters k∗ and ρ∗ according to Definition 5.8. The second barrier
is mounting the “martingale” attack with a uniform variant of the game-value sequence X0, . . . , Xr,
in the case that k∗ = k + 1. In Section 5.5.1, we show that there is an algorithm NuggetFinder
that finds the nugget with some “ε-loss”, i.e. the gap and similarity are guaranteed modulo ε, with
probability 1 − e−1/ε. That being said, because ε can be taken arbitrarily small, say 1/r1000, it
bears no consequence to the analysis of our attacks. Thus, if k∗ 6= k + 1, we can already deduce
a bias of magnitude 1/

√
r log(r)k for the uniform adversary setting. The case k∗ = k + 1 requires

careful treatment because of the game-value sequence, and we address it in Section 5.5.2.

5.5.1 Finding the Right Nugget

We show that there is an algorithm NuggetFinder that finds the nugget with some “ε-loss”, i.e. the
gap and similarity are guaranteed modulo ε, with probability 1− e−1/ε.

Proposition 5.31. There exists an algorithm NuggetFinder taking input a coin-tossing protocol Π
and a number ε ∈ (0, 1) such that the following holds. With probability 1−e−1/ε, NuggetFinder(Π, ε)
outputs (k∗, ρ∗,S0, S1,H) such that the following holds according to the value of k∗:

k∗ = 1:

1. Pr
[
maxi∈[r]

∣∣∣BS1
i −B

S0
i

∣∣∣ ≥ ρ∗

256
√
r
· coefn(k,k∗)1/2

(64 log(r))k−k
∗

]
≥ 1

2ρ∗ log(r) ·
64−k+k

∗

coefn(k,k∗)1/2
− ε.

2. H ≥ n/3, |S1| = |S0| = |H|, and |Sz(h)| = 1 for every h ∈ H and z ∈ {0, 1}.

k∗ ∈ {2, . . . , k}:

1. Same as Item 1 for k∗ = 1.

2. For every h, h′ ∈ H, z, z′ ∈ {0, 1}, U ′ ∈ Sz and ρ ∈ R(r):

(a)

Pr

[
max
i∈[r]

∣∣∣BSz(h)
i −BSz(h′)

i

∣∣∣ ≥ ρ

256
√
r
· coefn(k, k∗ − 1)1/2

(64 log(r))k−k
∗+1

]
≤ 1

2ρ log(r)
· 64−k+k∗−1

coefn(k, k∗ − 1)1/2
+ε.

(b) PrU←Sz [h ∈ U] = PrU←Sz [h′ ∈ U] ≤ 1
2 .

(c) PrU←Sz [h ∈ U] = PrU←Sz′ [h ∈ U].

(d) PrU←Sz [h /∈ U] /PrU←Sz [h ∈ U] ≥ 1
4 ·

n−k+k∗−1
k∗−1 .

(e) Prh←H,U←Sz(h) [U = U ′] = PrU←Sz [U = U ′]

k∗ = k + 1:

1. S1(h) = ∅ for every h ∈ H.

2. Prh←H,U←S0(h) [U = U ′] = PrU←S0 [U = U ′] for every U ′ ∈ S0.

3. Pr
[
maxi∈[r]

∣∣∣BS0
i −B

S1
i

∣∣∣ ≥ ρ
256
√
r

]
≤ 1

2ρ log(r) + ε for every ρ ∈ R(r).

The running time NuggetFinder is polynomial in the running time of Π and 1/ε, and it uses only
oracle access to Π’s next-message function.

41

The proof, sketched below, follows standard approximation via sampling argument .

Proof’s sketch. NuggetFinder samples a random partition A1,A0,P of [n] and simply follows the
steps of Figure 1 with the following caveats:

• In Item 3, NuggetFinder approximates the value of Pr

[
maxi∈[r]

∣∣∣∣BSk+1
1
i −BSk+1

0
i

∣∣∣∣ ≥ ρ
256
√
r

]
, by

running Π a number of 1/εs times, for some constant s.

• Similarly, in Item 3b, NuggetFinder approximates the value of

Pr

[
maxi∈[r]

∣∣∣BS`z(h)
i −BS`z(h′)

i

∣∣∣ ≥ ρ
256
√
r
· coefn(k, `− 1)1/2

(64 log(r))k−`+1

]
, by running Π a number of

1/εs times, for some constant s.

For suitable choice of s, Hoeffding’s inequality guarantees that, with probability 1 − e−1/ε,
NuggetFinder’s approximation is within ε of the “true” value, at every step. �

5.5.2 Computing the Game-Value Sequence

We now explain how to give a uniform variant of the game-value sequence to mount a successful
“martingale” attack. At the heart of the non-uniform attack is the sequence of random variable
X = (X0, . . . , Xr) defined as follows, with respect to to the sequence of backup values BS

1 , . . . , B
S
r

and output of the protocol out. Recall function g : [0, 1]3 × {0, 1} 7→ {0, 1} defined by

g(x, y, y′,NoJump) =

{
NoJump if |y − x| < 1/64

√
r ∨ |y′ − x| < 1/64

√
r,

0 otherwise;
(40)

Definition 5.32 (Restatement of Definition 5.14). Let X0 = E [out]. For i ∈ [r], define Xi such
that

Xi = rndδ

(
E

[
out | BS

i , B
S
i−1, Xi−1,

∑
`<i

(X` −X`−1)2, Gi−1

])
,

where Gi = g(BS
i , B

S
i−1, Xi, Gi−1), letting G0 = 1 and g be defined according to Equation (40).

The attacked used the following two properties of X:

1. Xi ∈ E
[
out | BS

i , B
S
i−1, Xi−1,

∑
`<i(X` −X`−1)2, Gi−1

]
± 1/200r, and

2. Pr [∃i ∈ [r] : |Xi −Xi−1| ≥ 1/32
√
r] ∈ Ω(1).

The first item holds by definition. The second item follows by the SoS-augmented weak martingale
property of X. Hence, to prove the uniform case, all we need to find is a uniformly constructed
sequence X̂ = (X̂1, . . . , X̂r) for which the above two properties hold.

We show how to construct a sequence that almost achieves the above properties, and still suffices
for our purposes. Specifically, we show that with high probability (i.e., 1 − e−r) over a choice of
some initialization randomness µ, there exists a a sequence of random variables X̂ = (X̂1, . . . , X̂r)
where each X̂i ∈ [0, 1] is efficiently constructed from BS

≤i, and the following holds for every i ∈ [r]:

42

Pr

[
X̂i /∈ E

[
out | BS

i , B
S
i−1, X̂i−1,

∑
`<i

(X̂` − X̂`−1)2, Ĝi−1

]
± 1/200r

]
≤ 1/r2 (41)

letting Ĝi = g(X̂i, B
S
i , B

S
i−1, Ĝi−1). Namely, X̂ is close to being a SoS-augmented weak martingales

sequence. Fortunately, we prove that such a sequence still has a jump with constant probability.
Specifically, Corollary 3.5 yields that

Pr
[
∃i ∈ [r] :

∣∣∣X̂i − X̂i−1

∣∣∣ ≥ 1/32
√
r
]
∈ Ω(1) (42)

It is easy to verify that the proof of Lemma 5.13 still goes through with respect to such a sequence.
In the rest of this section we define a uniformly constructed sequence X̂ for which Equation (41)
holds.

Remark 5.33. We emphasize that our goal is to construct a sequence (X̂1, . . . , X̂r) satisfying
Equations (41) and (42), with little regard to how close it is to the “real” sequence X1, . . . , Xr. As
mentioned in the introduction, because of the recursive nature of X1, . . . , Xr, approximating such a
sequence may be hopeless. For further discussion, we refer the reader to Section 1.1.1.

Notation 5.34. Let B and D denote the sets supp(BS
·) and

{
0, 1

(200r)2
, 2

(200r)2
, . . . , r

}
, respectively.

Algorithm 5.35 (Algorithm BuildX for constructing {µi}i=0,...,r).

Parameters: S ⊆
([n]
k

)
Description:

1. Sample
{

(b`i,1, . . . , b
`
i,r)← (BS

1 , . . . , B
S
r)
}

i=0,...,r
`=1,...,r50

, by running r · r50 instances of protocol Π .

2. For i = 0, . . . , , r:

Compute µi = BuildXLoop

(
i, {µj}j<i ,

{
(b`i,1, . . . , b

`
i,r)
}
`=1,...,r50

)
.

Output: {µi}ri=0

. .
Algorithm 5.36 (Algorithm BuildXLoop).

Parameters: i ∈ [r],
{
µj : B2 ×D2 × {0, 1} 7→ D

}
j<i

,
{

(b`1, . . . , b
`
r)
}
`=1,...,r50

Description:

1. Set µi = 0

2. For ` = 1, . . . , r50

(a) Set σ`0 = 0, τ `0 = 1.

(b) For j = 1 . . . , i− 1, compute

i. x`j = µj(b
`
j , b

`
j−1, x

`
j−1, σ

`
j−1, τ

`
j−1),

ii. σ`j = (x`j − x`j−1)2 + σ`j−1,

43

iii. τ `j = g(b`j , b
`
j−1, x

`
j , τ

`
j−1).

3. For every c = (b, b′, x, σ, τ) ∈ B2 ×D2 × {0, 1}, compute

(a) qc =
∣∣{` ∈ [r50] : (b`i , b

`
i−1, x

`
i−1, σ

`
i−1, τ

`
i−1) = (b, b′, x, σ, τ)

}∣∣
pc =

∣∣{` ∈ [r50] : (b`i , b
`
i−1, x

`
i−1, σ

`
i−1, τ

`
i−1) = (b, b′, x, σ, τ) ∧ b`r = 1

}∣∣.
(b) If qc 6= 0, set µi(b, b

′, x, σ, τ) = rnd1/200r (pc/qc) .

Output: µi.. .

Namely, Algorithm 5.35 operates in a sequence of r iterations as follows. At it-
eration i, the algorithm outputs a function of µi such that µi(b, b

′, x, σ, τ) approximates
E
[
out | BS

i = b, BS
i−1 = b′, agtµ<i(B

S
<i) = (x, σ, τ)

]
, where µ<i = µ0, . . . , µi−1 corresponds to the

functions constructed at the previous iterations and the function agtµ<i maps sequences BS
<i to

3-tuples in D2 × {0, 1}. Intuitively, the function agtµ<i encodes an aggregated account of the se-

quence BS
<i consisting of – the previous (approximated) game-value – the sum of (approximated)

squares – and the “trigger” of the attack, i.e. whether a backup value diverged significantly from
the (approximated) game-value at any given round of the protocol.

Remark 5.37 (Running time of BuildX). It is immediate to see that Algorithm 5.36 runs in time
polynomial in the running time of Π and r.

Formally, for an output µ = {µi}i∈[r] of BuildX, we define the sequence X̂µ = (X̂µ
0 , . . . , X̂

µ
r) as

follows.

Definition 5.38 (X̂µ). For fixed value of µ = {µi}i∈[r] output by BuildX, the sequence X̂µ =

(X̂µ
0 , . . . , X̂

µ
r) is defined as follows. Let X̂µ

0 = 1/2 . For i ∈ [r], define X̂µ
i such that

X̂µ
i = µi(B

S
i , B

S
i−1, X̂

µ
i−1,

∑
j≤i−1

(X̂µ
j − X̂

µ
j−1)2, Ĝµi−1)

where Ĝµi = g(BS
i , B

S
i−1, X̂

µ
i , Ĝ

µ
i−1), letting Ĝ0 = 1 and g be defined according to Equation (40).

We conclude the section by proving the following claim.

Claim 5.39. With save but probability O(e−r) over µ← BuildX(Π, S), the following holds for every
i ∈ [r]:

Pr

[
X̂µ
i /∈ E

[
out | BS

i , B
S
i−1, X̂

µ
i−1,

∑
`<i

(X̂µ
` − X̂

µ
`−1)2, Ĝµi−1

]
± 1/200r

]
≤ 1/r2. (43)

Proof. Let ε = r−10. For conciseness, write Zµi for the 5-tuple (BS
i , B

S
i−1, X̂

µ
i−1,

∑
`<i(X̂

µ
` −

X̂µ
`−1)2, Ĝµi−1) and notice that |supp(Zµi)| ≤

∣∣B2 ×D2 × {0, 1}
∣∣ ≤ r8. Using the notation from

Algorithm 5.36, for every i ∈ [r] and c ∈ supp(Zi), it holds that

Prµi

[∣∣∣Pr [out = 1 ∧ Zµi = c]− pc
r50

∣∣∣ ≥ ε2
]
≤ 2 · exp(−2 · r50 · ε4),

Prµi

[∣∣∣Pr [Zµi = c]− qc
r50

∣∣∣ ≥ ε2
]
≤ 2 · exp(−2 · r50 · ε4).

44

Both inequalities follow by Hoeffding’s inequality. Consequently, for every c ∈ supp(Zµ·), we deduce
that

Prµ0,...,µr

[
∃i ∈ [r] :

∣∣∣Pr [out = 1 ∧ Zµi = c]− pc
r50

∣∣∣ ≥ ε2 ∨
∣∣∣Pr [Zµi = c]− qc

r50

∣∣∣ ≥ ε2
]
≤ e−r

Hereafter, we fix a mapping µ = (µ0, . . . , µr) satisfying, for every i ∈ [r] and c ∈ supp(Zi),∣∣∣Pr [out = 1 ∧ Zµi = c]− pc
r50

∣∣∣ < ε2,∣∣∣Pr [Zµi = c]− qc
r50

∣∣∣ < ε2. (44)

Next, we fix i and c such that Pr [Zµi = c] ≥ ε. Using the fact that 1/(1 + x) ∈ 1 ± 2x, for small
enough x, we deduce that

pc
qc
∈

Pr [out = 1 ∧ Zµi = c]± ε2

Pr [Zµi = c]± ε2
(45)

∈
Pr [out = 1 ∧ Zµi = c]± ε2

Pr [Zµi = c]
± 2 · ε

∈ E [out | Zµi = c]± 3ε

Our choice of ε yields that X̂µ(c) = rnd1/200r(pc/qc) ∈ E [out | Zµi = c]± 1/200r. We conclude by
noticing that the probability of running into an element c at round i such that Pr [Zµi = c] < ε is
bounded above by ε · |supp(Zµi)| ≤ 1

r2
. �

References

[1] B. Alon and E. Omri. Almost-optimally fair multiparty coin-tossing with nearly three-quarters
malicious. In Proceedings of the 14th Theory of Cryptography Conference, TCC 2016-B, part
I, pages 307–335, 2016. 10

[2] G. Asharov. Towards characterizing complete fairness in secure two-party computation. In
Y. Lindell, editor, Theory of Cryptography - 11th Theory of Cryptography Conference, TCC
2014, volume 8349 of Lecture Notes in Computer Science, pages 291–316. Springer, 2014. 12

[3] G. Asharov, Y. Lindell, and T. Rabin. A full characterization of functions that imply fair
coin tossing and ramifications to fairness. In A. Sahai, editor, Theory of Cryptography - 10th
Theory of Cryptography Conference, TCC 2013, volume 7785 of Lecture Notes in Computer
Science, pages 243–262. Springer, 2013. 12

[4] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete characterization of fairness
in secure two-party computation of boolean functions. In Y. Dodis and J. B. Nielsen, editors,
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, 2015, Pro-
ceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages 199–228. Springer,
2015. 12

[5] B. Awerbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement Bracha’s
O(log n) byzantine agreement algorithm. Unpublished manuscript, 1985. 1, 2, 10, 12

45

[6] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority.
In Advances in Cryptology – CRYPTO 2010, pages 538–557, 2010. 10

[7] A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-secure multiparty computation without
honest majority and the best of both worlds. In P. Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 277–296. Springer,
2011. 11

[8] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with a dishonest majority.
Journal of Cryptology, 28(3):551–600, 2015. 10

[9] M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems, 1983. 2,
10

[10] N. Buchbinder, I. Haitner, N. Levi, and E. Tsfadia. Fair coin flipping: Tighter analysis and
the many-party case. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2580–2600, 2017. 1, 2, 6, 7, 10, 12

[11] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.
1, 2, 10, 11, 12, 25

[12] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete control processes
(extended abstract). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.

1797, 1993. 1, 3, 4, 5, 6, 10, 16

[13] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Characterization of secure multiparty computa-
tion without broadcast. In Proceedings of the 14th Theory of Cryptography Conference, TCC
2016-B, part I, pages 596–616, 2016. 11

[14] R. Cohen, I. Haitner, E. Omri, and L. Rotem. From fairness to full security in multiparty
computation. Manuscript, 2018. 10

[15] D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-box complexity
of optimally-fair coin tossing. In Proceedings of the 8th Theory of Cryptography Conference,
TCC 2011, volume 6597, pages 450–467, 2011. 11

[16] D. Dachman-Soled, M. Mahmoody, and T. Malkin. Can optimally-fair coin tossing be based
on one-way functions? In Y. Lindell, editor, Theory of Cryptography - 11th Theory of Cryp-
tography Conference, TCC 2014, volume 8349 of Lecture Notes in Computer Science, pages
217–239. Springer, 2014. 11

[17] A. DasGupta. Probability for Statistics and Machine Learning: Fundamentals and Advanced
Topics. Springer Texts in Statistics. Springer New York, 2011. ISBN 9781441996343. 16

[18] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(34):211–407, 2014. 12

[19] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. Journal of Privacy and Confidentiality, 7(3):2, 2016. 5, 12

46

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.1797
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.1797

[20] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Guilt-free data reuse.
Commun. ACM, 60(4):86–93, 2017. 12

[21] D. Gordon and J. Katz. Complete fairness in multi-party computation without an honest
majority. In Proceedings of the 6th Theory of Cryptography Conference, TCC 2009, pages
19–35, 2009. 12

[22] D. Gordon and J. Katz. Partial fairness in secure two-party computation. In H. Gilbert, editor,
Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 157–176. Springer, 2010. 11

[23] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. J. ACM, 58(6):24:1–24:37, 2011. 12

[24] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping protocol. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages
817–836, 2014. 10

[25] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping protocol. SIAM
J. Comput., 46(2):479–542, 2017. 1, 2, 6, 7, 12, 13

[26] I. Haitner, N. Makriyannis, and E. Omri. On the complexity of fair coin flipping. www.cs.

tau.ac.il/~iftachh/papers/CFtoKA/TwoPartyCoinFlipToKA.pdf, 2018. Manuscript. 11

[27] I. Haitner, K. Nissim, E. Omri, R. Shaltiel, and J. Silbak. Computational two-
party correlation. www.cs.tau.ac.il/~iftachh/papers/ComputationalCorrelation/

ComputationalCorrelation.pdf, 2018. Manuscript. 11

[28] N. Makriyannis. On the classification of finite boolean functions up to fairness. In M. Abdalla
and R. D. Prisco, editors, Security and Cryptography for Networks - 9th International Con-
ference, SCN 2014, 2014., volume 8642 of Lecture Notes in Computer Science, pages 135–154.
Springer, 2014. 12

[29] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Proceedings of the 6th
Theory of Cryptography Conference, TCC 2009, pages 1–18, 2009. 10

[30] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. Journal of Cryptology, 29(3):
491–513, 2016. 1, 2, 6, 7, 12

[31] P. I. Nelson. A class of orthogonal series related to martingales. Annals of Mathematical
Statistics, 41:1684–1694, 1970. 3

A Missing Proofs

Proof of Fact 2.6. We distinguish four cases, depending on the signs of γ and γ′.

Case 1. (γ ≥ 0, γ′ ≥ 0). p/p′ =
1
2
·e−γ

1
2
·e−γ+ε = e−ε ∈ 1± 2ε.

47

www.cs.tau.ac.il/~iftachh/papers/CFtoKA/TwoPartyCoinFlipToKA.pdf
www.cs.tau.ac.il/~iftachh/papers/CFtoKA/TwoPartyCoinFlipToKA.pdf
www.cs.tau.ac.il/~iftachh/papers/ComputationalCorrelation/ComputationalCorrelation.pdf
www.cs.tau.ac.il/~iftachh/papers/ComputationalCorrelation/ComputationalCorrelation.pdf

Case 2. (γ ≥ 0, γ′ < 0). p/p′ =
1
2
·e−γ

1− 1
2
·eγ−ε = 1

2eγ−e2γ−ε . Since γ ≥ 0 and γ − ε < 0, it follows that

0 ≤ γ ≤ ε < 1 and thus −ε < γ− ε < ε. Thus 1
2eγ−e2γ−ε = e−ε · 1

2eγ−ε−e2(γ−ε) ∈ e
ε · (1± ε2) ∈ 1± 5ε.

Case 3. (γ < 0, γ′ ≥ 0). p/p′ =
1− 1

2
·eγ

1
2
·e−γ+ε = 2 · eγ−ε − e2γ−ε. Similarly to the previous case,

since γ < 0 and γ − ε ≥ 0, it follows that 0 > γ ≥ ε > −1 and thus ε < γ < −ε. Thus
2 · eγ−ε − e2γ−ε = e−ε · (2eγ − e2γ) ∈ e−ε · (1± ε2) ∈ 1± 5ε.

Case 4. (γ < 0, γ′ < 0): p/p′ =
1− 1

2
·eγ

1− 1
2
·eγ−ε =

1− 1
2
·eγ′−ε′

1− 1
2
·eγ′ =

1− 1
2
·eγ′ ·e−ε′

1− 1
2
·eγ′ . Let µ = 1 − 1

2 · e
−γ′ and

notice that µ ∈ [1/2, 1]. Compute
1− 1

2
·eγ′−ε′

µ = 1+ 1−µ
µ −

1−µ
µ ·e

−ε′ ∈ 1+ 1−µ
µ −

1−µ
µ ·(1±2ε) ∈ 1±2ε.

�

Lemma A.1. Consider an iterative sequence of r independent Bernoulli trials, where the success
probability of the ith trial is pi ∈ [0, 1]. Assume that pr = 1. For i ∈ [r], let qi = pi ·

∏
j<i(1 − pj)

be the probability of the first success occurring in the ith trial. It holds that
∑r

i=1 qi · (
∑

j≤i pj) = 1.

Proof. We prove the claim by proving a stronger statement. Namely, for arbitrary pr ∈ [0, 1], we
show that

r∑
i=1

qi

∑
j≤i

pj

 = 1−

∏
i≤r

(1− pi)

1 +
∑
i≤r

pi

 . (46)

Notice that our claim is a special case of Equation (46) for pr = 1. We proceed to prove the equation
by induction on r. For r = 1, take arbitrary p1 ∈ [0, 1] and notice that q1p1 = 1− (1− p1)(1 + p1).
Next, assume that Equation (46) is true and let pr+1 ∈ [0, 1]. The calculation below concludes the
proof.

r+1∑
i=1

qi

∑
j≤i

pj

 = 1−

∏
i≤r

(1− pi)

1 +
∑
i≤r

pi

+ pr+1

∏
i≤r

(1− pi)

pr+1 +
∑
i≤r

pi

= 1−

∏
i≤r

(1− pi)

1− p2
r+1 + (1− pr+1)

∑
i≤r

pi

= 1−

 ∏
i≤r+1

(1− pi)

1 +
∑
i≤r+1

pi

 ,

where the last transition follows using 1− p2
r+1 = (1− pr+1)(1 + pr+1). �

Lemma A.2. Consider two iterative sequences, each of r independent Bernoulli trials. Let pi, p
′
i ∈

[0, 1] denote the success probability of the ith trial of the first and second sequence, respectively.

Assume that pr = p′r = 1. Let ε be such that for all i ∈ [r], it holds that pi
p′i
,
p′i
pi
,

(1−p′i)
(1−pi) ,

(1−pi)
(1−p′i)

∈ (1±ε).
Then, for every i ∈ [r],∣∣∣∣∣∣

∏
j≤i

(1− p′j)−
∏
j≤i

(1− pj)

∣∣∣∣∣∣ ≤ 3ε

∏
j≤i

(1−min(pj , p
′
j))

∑
j≤i

min(pj , p
′
j)

 . (47)

48

Proof. First, observe that 1 − pi ∈ (1 ± 3ε · pi)(1 − p′i) and 1 − p′i ∈ (1 ± 3ε · p′i)(1 − pi), for every
i ∈ [r]. We hint on how to verify the former (the latter is symmetric). If pi ≥ 1/3 or if p′i ≤ 2/3,
then verifying 1 − pi ∈ (1 ± 3ε · pi)(1 − p′i) is easy. Otherwise, if pi < 1/3 and p′i > 2/3, then
εpi > 1/3, and hence 3εpi > 1. Thus, (1± 3ε · pi)(1− p′i) > 1 > 1− pi.

We prove Equation (47) by induction on i. For every j ∈ [i], let p̃j = min(pj , p
′
j). For the base

case, |(1− p1)− (1 + p′1)| ≤ 2εp̃1(1 − p̃1). Next, assume that Equation (47) is true up to some
i ∈ [r]. Without loss of generality, further assume that p̃i+1 = pi+1 and let u ∈ [0, 1] such that
1− pi+1 = (1 + 3uεpi+1)(1− p′i+1). For the induction step, compute∣∣∣∣∣∣
∏
j≤i+1

(1− p′j)−
∏
j≤i+1

(1− pj)

∣∣∣∣∣∣ ≤ (1− p′i+1)

∣∣∣∣∣∣
∏
j≤i

(1− p′j)− (1 + 3εupi+1)
∏
j≤i

(1− pj)

∣∣∣∣∣∣
≤ (1− p′i+1)

∣∣∣∣∣∣
∏
j≤i

(1− p′j)−
∏
j≤i

(1− pj)

∣∣∣∣∣∣+

∣∣∣∣∣∣3uεpi+1(1− p′i+1)
∏
j≤i

(1− pj)

∣∣∣∣∣∣
≤ (1− p̃i+1)3ε

∏
j≤i

(1− p̃j)

∑
j≤i

p̃j

+ 3εpi+1

∏
j≤i+1

(1− p̃j)

= 3ε

 ∏
j≤i+1

(1− p̃j)

p̃i+1 +
∑
j≤i

p̃j

 .

The second inequality is by the triangle inequality. The third inequality follows by the induction
hypothesis and the fact that for every j ∈ [i + 1] it holds that 1 − pj , 1 − p′j ≤ 1 − p̃j . The last
transition is true by the assumption that p̃i+1 = pi+1. �

Lemma A.3. Consider two iterative sequences, each of r independent Bernoulli trials. Let pi, p
′
i ∈

[0, 1] denote the success probability of the ith trial of the first and second sequence, respectively.
Assume that pr = p′r = 1. For i ∈ [r], let qi = pi ·

∏
j<i(1− pj) and q′i = p′i ·

∏
j<i(1− p′j). Let ε be

such that for all i ∈ [r], it holds that pi
p′i
,
p′i
pi
,

(1−p′i)
(1−pi) ,

(1−pi)
(1−p′i)

∈ (1± ε). Then, for every i ∈ [r], it holds

that ∣∣qi − q′i∣∣ ≤ 3ε ·min(pi, p
′
i) ·

∏
j<i

(1−min(pj , p
′
j))

1

3
+
∑
j≤i

min(pj , p
′
j)

 . (48)

Proof. For every j ∈ [i], let p̃j = min(pj , p
′
j). Without loss of generality, assume that p̃i = pi and

let u ∈ [0, 1] such that p′i = (1 + uε)pi (there exists such u since p′i ∈ pi(1± ε)).∣∣∣∣∣∣pi
∏
j<i

(1− pj)− p′i
∏
j<i

(1− p′j)

∣∣∣∣∣∣ ≤ pi
∣∣∣∣∣∣
∏
j<i

(1− pj)−
∏
j<i

(1− p′j)

∣∣∣∣∣∣+

∣∣∣∣∣∣εupi
∏
j<i

(1− p′j)

∣∣∣∣∣∣
≤ 3εp̃i

∏
j<i

(1− p̃j)

∑
j<i

p̃j

+ εp̃i
∏
j<i

(1− p̃j)

≤ 3εp̃i

∏
j<i

(1− p̃j)

1

3
+
∑
j<i

p̃j

 .

49

The first inequality is by the triangle inequality. The second inequality follows by Lemma A.2 and
the fact that for every j ∈ [i] it holds that 1− p′j ≤ 1− p̃j . �

Lemma A.4 (Restating Lemma 2.7). Consider two iterative sequences, each of r independent
Bernoulli trials. Let pi, p

′
i ∈ [0, 1] denote the success probability of the ith trial of the first and

second sequence, respectively. Assume that pr = p′r = 1. For i ∈ [r], let qi = pi ·
∏
j<i(1− pj) and

q′i = p′i ·
∏
j<i(1− p′j). Let ε be such that for all i ∈ [r], it holds that pi

p′i
,
p′i
pi
,

(1−p′i)
(1−pi) ,

(1−pi)
(1−p′i)

∈ (1± ε).
Then,

∑r−1
i=1 |qi − q′i| ≤ 4ε(1− qr).

Proof. For every j ∈ [r], let p̃j = min(pj , p
′
j), and for every i ∈ [r] let q̃i = p̃i ·

∏
j<i(1− p̃j). Since

the p̃js define an iterative sequence of Bernoulli trials, from Lemma A.3 and Lemma A.1 it follows
that,

r−1∑
i=1

∣∣qi − q′i∣∣ ≤ r−1∑
i=1

3ε · p̃j ·

∏
j<i

(1− p̃j)

1

3
+
∑
j≤i

p̃j

 (49)

≤ 3ε ·
r−1∑
i=1

q̃j

1

3
+
∑
j≤i

p̃j

 (50)

= ε

(
r−1∑
i=1

q̃j

)
+ 3ε ·

 r∑
i=1

q̃j

∑
j≤i

p̃j

− 3ε · q̃r

∑
j≤r

p̃j

 (51)

≤ 4ε− 4εq̃r ≤ 4ε(1− qr). (52)

The second to last inequality uses the fact that p̃r = pr = p′r = 1. The last inequality follows since
1− q̃r ≤ 1− qr. �

Proof of Fact 2.9. Straightforward computation. Fix b ∈ supp(B)

E [E [A | B,C] | B = b] =
∑
c

E [A | B = b, C = c] Pr [C = c | B = b]

=
∑
c

∑
a

a · Pr [A = a | B = b, C = c] Pr [C = c | B = b]

=
∑
a

a ·
∑
c

Pr [A = a ∧ C = c | B = b]

=
∑
a

a · Pr [A = a | B = b]

= E [A | B = b]

�

Proof of Fact 2.10. Immediate consequence of the fact that E [A | E [A | B] , f(B)] =
E [E [A | B] | E [A | B] , f(B)], since B fully determines E [A | B] and f(B). �

50

Proof of Fact 2.11. Let B′ = rndδ(B) and fix b′ ∈ supp(B) ⊆ R and c ∈ supp(C).

E
[
A | B′ = b′ ∧ C = c

]
=
∑
a

a · Pr
[
A = a | B′ = b′ ∧ C = c

]
=
∑
a

a ·
∑

b∈[b′,b′+δ]

Pr
[
A = a ∧B = b | B′ = b′ ∧ C = c

]
=
∑
a

a · 1

Pr [B′ = b′ | C = c]

∑
b∈[b′,b′+δ]

Pr [A = a ∧B = b | C = c]

=
1

Pr [B′ = b′ | C = c]

∑
b∈[b′,b′+δ]

Pr [B = b | C = c] ·
∑
a

a · Pr [A = a | B = b ∧ C = c]

=
1

Pr [B′ = b′ | C = c]

∑
b∈[b′,b′+δ]

Pr [B = b | C = c] ·E [A | B = b, C = c]

=
1

Pr [B′ = b′ | C = c]

∑
b∈[b′,b′+δ]

b · Pr [B = b | C = c]

∈ [b′, b′ + δ]

�

51

	Introduction
	Our Results
	Augmented Weak Martingales have Large Gap
	Oblivious Sampling via Differential Privacy

	Our Techniques
	CleveI93's Inefficient Attack
	Towards an Efficient Attack via Augmented Weak Martingales
	An Efficient Attack for n= r
	An Efficient Attack for nk r via Differentially Private Sampling
	Computing Doob-like Weak Martingales

	Related Work
	Coin Flipping
	1/p-Secure Protocols
	Complete Fairness Without Honest Majority
	Differential Privacy

	Preliminaries
	Notation
	Coin-Flipping Protocols
	Basic Probability Facts
	The Laplace Distribution
	Useful Observations about Iterated Bernoulli Trials
	Useful Observations about Conditional Expectation

	Martingales

	Augmented Weak Martingales have Large Gaps
	 Oblivious Sampling via Differential Privacy
	Proving thm:Laplace
	Proving thm:LaplaceGen

	Biasing Coin-Flipping Protocols
	The Game Value Jump Attack
	The Game-Value Sequence
	The Attack
	Success probability of alg:MartingalesAttack.

	The Differential Privacy Based Attack
	The Attack
	Success probability of alg:LapAttack

	The Singletons Attack
	The Attack
	Success probability of alg:SingeltonAttack

	Proof of lemma:UsefulNaget
	Uniform Adversaries
	Finding the Right Nugget
	Computing the Game-Value Sequence

	Missing Proofs

