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Abstract

In this thesis we investigate phase transition behaviors in several systems
in combinatorics and in private computation. The term phase transition orig-
inated in physics, where it describes the transformation of a thermodynamic
system from one phase to another. A phase transition of a system is usually
characterized by a sharp threshold point at which a change in some underly-
ing parameter of the system causes an abrupt change in one or more global
properties of the system. It is now common in many research areas to use the
term phase transition to describe similar phenomena of systems in those areas.
Moreover, searching for such threshold behaviors in known systems have of-
ten led to new understanding of these systems. Examples are found in proba-
bility theory, statistics, computer science, combinatorics, logic, economics, and
political science.

In this work we follow this paradigm investigating the behavior of fast
growing combinatorial functions, and the limitations of some models of pri-
vate data analysis. Generally speaking, we follow a few basic steps in our in-
vestigations of these systems. When interested in understanding the behavior
of some property (e.g., the provability of Ramsey type propositions in some
powerful axiomatic system T ), we consider two extreme cases (i.e., one in
which the property holds and the other where it does not), and parameter-
ize the system by emphasizing on the difference between the two extremes
(e.g., if these Ramsey type propositions are provable when stated for a con-
stant number of colors, but unprovable with linearly many colors, then we
will parameterize on the number of colors). Finally, we consider the existence
of a sharp threshold point and try to compute it if one exists.

The results of this thesis belong to three main areas that are described be-
low.

Ramsey Theory

Ramsey Theory is a branch of combinatorics and graph theory that deals
with the idea that within a sufficiently large system, however disordered, there
must be some order. This theory is British mathematician Frank P. Ramsey’s
most celebrated contribution to mathematics. In this thesis we consider Ram-
sey functions (usually referred to as Ramsey numbers) for graph-colorings.
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The most basic query of this area is known as the Party Puzzle: How many
people, arbitrarily chosen, would suffice to ensure that amongst them there
are either k of whom every two know each other or k of whom no two know
each other? The basic Ramsey Theorem asserts that this question is legitimate,
as for any natural number k, there exists a natural number N , so that any N
given people contain k such that either all know each other or no two of them
know each other.

Define the complete graph KN = (V,E) to be an undirected graph over N
vertices, V = {0, . . . , N − 1}, containing all possible edges (i.e., the edges of
KN are the set E = {(i, j) : 0 ≤ i < j < N}). Ramsey’s theorem for pair col-
orings asserts that for every two natural numbers k and c, there exists an N
such that, for any coloring C of the edges of the complete graph KN that uses
no more than c colors, there is a sub-graph H of KN that is a copy of the com-
plete graph Kk (i.e., the complete graph over k vertices), such that all edges of
H are assigned the same color by C (we then say that H is C-homogeneous).
Furthermore, it is known that N = cck suffices. We, however, are usually inter-
ested in the least N that suffices, which is called the standard Ramsey number
for k, c and denoted by R(k, c). By way of example, in the case of the party
puzzle c is fixed to be 2 (i.e., know or don’t-know).

In this thesis we consider the behavior of the Ramsey numbers of two vari-
ants of Ramsey’s theorem. Both were originally proposed as natural Gödel
sentences, that is, as examples of combinatorial propositions that are true but
unprovable in some powerful axiomatic theory. These propositions are known
as the regressive Ramsey theorem and the Paris-Harrington Ramsey theorem.
We consider parameterized versions of these two theorems for pair colorings
and prove that they have sharp phase transition thresholds.

g-regressive Ramsey numbers. Given a function g : N → N, a coloring of the
edges of the complete graph C : E → N is g-regressive if for all edges (i, j) ∈ E
it holds that C((i, j)) ≤ i (where i < j). A subgraph H of KN is called min-
homogeneous for a coloring C : E → N if C restricted to E(H) (the edges of H)
only depends on the minimum vertex in an edge, that is, for every two edges
(i, j1), (i, j2) ∈ E(H) it holds that C((i, j1)) = C((i, j2)).

For a given function g, the g-regressive Ramsey theorem for pairs states
that for every natural number k there exists a natural number N , such that
for every g-regressive coloring C of the edges of KN , there exists a copy H of
Kk inside Kn that is min-homogeneous for C. Let Rreg

g (k) be the least natural
number that satisfies the g-regressive Ramsey theorem for pairs for k.

Kanamori and McAloon introduced the regressive Ramsey theorem, which
is exactly the g-regressive Ramsey theorem for g = Id, and showed that Rreg

Id (·)
has an Ackermannian growth rate (i.e., grows faster than any primitive recur-
sive function). On the other hand, for constant g, it is easy to see that Rreg

g (·)
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grows slower than the standard Ramsey number for pairs, and hence is prim-
itive recursive.

Hence, we have for the two extremes that Rreg
Id (·) is Ackermannian, while

if g is constant then Rreg
g (·) is primitive recursive. We look for a threshold

function for this transition from primitive recursive growth rate to Ackerman-
nian growth rate. We consider the combinatorial behavior of these Ramsey
numbers and show that a sharp threshold exists and lies above all functions
n1/f−1(n) obtained from a primitive recursive f and below n1/Ack−1(n). Worded
differently, for a nondecreasing and unbounded g to have primitive recursive
g-regressive Ramsey numbers it is necessary and sufficient that g is eventually
dominated by n1/t for all t > 0 and that the rate at which g gets below n1/t is
not too slow: if g gets below n1/t only after an Ackermannianly long time M(t),
then the g-regressive Ramsey numbers are still Ackermannian.

We also identify the threshold below which g-regressive colorings have
usual Ramsey numbers, that is, admit homogeneous, rather than just min-
homogeneous sets, and give a lower bound of A53(2

2274) on the Id-regressive
Ramsey number of k = 82, where A53 is the 53-rd approximation of Acker-
mann’s function.

g-large Ramsey numbers. Given a function g : N → N, the g-large Ramsey
theorem for pairs states that for every two natural numbers k, c there exists a
natural number N , such that for every coloring C of the edges of KN with c
colors, there exists a C-homogeneous copy H of Kk′ (for k′ ≥ k) inside Kn, and
the minimal vertex i in H satisfies g(i) < k′, i.e., H = (V ′, E ′) such that for all
e1, e2 ∈ E ′ it holds that C(e1) = C(e2) and |V ′| ≥ max {k, g(min(V ′))}.

Let R∗
g(k, c) be the least natural number that satisfies the g-large Ramsey

theorem for pairs for k, c. The Paris-Harrington Ramsey theorem for pairs is
exactly the g-large Ramsey theorem for pairs with g = Id. Erdős and Mills have
shown that R∗

Id(·, ·) has an Ackermannian growth rate. The g-large Ramsey
theorem for a constant function g is practically the standard Ramsey theorem.

Hence, in the two extremes we have that if g is constant then R∗
g(·, ·) is

primitive recursive, and if g = Id then R∗
g(·, ·) is Ackermannian. We look for

a threshold function for this transition from a primitive recursive growth rate
to an Ackermannian growth rate. We consider the combinatorial behavior of
these functions and show that a sharp threshold exists and lies above all func-
tions log(n)/f−1(n) obtained from an increasing primitive recursive f and be-
low the function log(n)/Ack−1(n). Worded differently, for a nondecreasing and
unbounded g to have primitive recursive g-large Ramsey numbers it is neces-
sary and sufficient that g is eventually dominated by log(n)/t for all t > 0 and
that the rate at which g gets below log(n)/t is not too slow, namely, is primitive
recursive in t: if g gets below log(n)/t only after an Ackermannianly long time
M(t), then the g-large Ramsey numbers are still Ackermannian.
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Iteration hierarchies

We consider functions defined via diagonalization from an iteration hier-
archy (of Grzegorczyk type). Assume that we are given two functions g, h :
R ∩ [0,∞) → R ∩ [0,∞). For r ∈ R, let ⌊r⌋ denote the largest integer not
exceeding r. We then consider the following diagonalization: For x ∈ N, let

B(g, h)0(x)
∆
= g(x), and let

B(g, h)k+1(x)
∆
= B(g, h)

⌊h(x)⌋
k (x) i.e. ⌊h(x)⌋ many iterations,

B(g, h)ω(x)
∆
= B(g, h)⌊x⌋(x).

For example, the Ackermann function is defined as Ack(n) = B(g, h)ω(n),
where g(x) = x + 1 and h = Id, and that Ai(n) = B(g, h)i(n). The question
arises: for which pairs of functions g, h is the resulting diagonalization primi-
tive recursive? When does it become Ackermannian?

Specifically, fixing g(x) = x + 1 (as in the Ackermann hierarchy), we in-
vestigate the threshold function h at which the resulting hierarchy stops be-
ing primitive recursive and becomes Ackermannian. We show that a sharp
threshold for h exists and that it is intrinsically related to g-regressive Ramsey
numbers.

We then consider a class of start functions g (starting with g(x) = x + ε for
0 < ε ≤ 1 and constantly increasing them). We show appropriate classes of
iteration modulus h for which the resulting classes of hierarchies are slow-
growing and later we show appropriate classes of iteration modulus h for
which the resulting classes of hierarchies are fast-growing. These two classes
are very similar, yet result in extremely different growth rates.

Distributed differential privacy

In private data analysis our goal is to compute some function applied to
a set of individual data with an overall privacy requirement of protecting the
private information of individuals. The challenge is therefore imposed by the
inherent tension between the need to compute some valuable estimation of the
function (utility) on the one hand, and the need to protect the information of
individuals (privacy) on the other. An exemplifying scenario for the notion of
private data analysis is of a hospital database containing medical records of
patients. The hospital, which would like to enable valuable medical research
based on the information stored in the database, must ensure, for ethical as
well as legal reasons, that the privacy of its patients is protected, i.e., no infor-
mation regarding the medical condition of any specific patient can be “traced
back” to that individual. This example illustrates the tension between supply-
ing utility and preserving privacy.
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We consider a criterion, suggested by Dwork et al., for analyses that pre-
serve privacy of individuals, called differential privacy. Much consideration was
given to constructing differentially private analyses in a setup where all the
records of the database are held by some trusted entity. We consider a scenario
where each record of the database is held by an individual party and the cen-
tralized trusted entity is implemented by a distributed protocol executed by
the parties. The task of securely computing a given function in the distributed
setting is known to be achievable using secure function evaluation (SFE) pro-
tocols. Thus, a natural paradigm for constructing distributed protocols for
differentially private analyses is: first choose a differentially private analysis
(i.e., choose what to compute) while abstracting away implementation issues,
then construct an SFE protocol for this analysis (i.e., choose how to compute).

This paradigm for constructing protocols is both simple and modular; how-
ever, since SFE and differential privacy are significantly different requirements,
it may result in non-optimal protocols. We initiate an examination of whether
there are advantages to a paradigm where both a differentially private analy-
sis and the distributed protocol for implementing it are constructed simultane-
ously. This examination highlights the relation between private data analysis
and SFE. In particular, we examine the case of binary sum queries (where each
of n parties holds a sensitive bit). We consider the communication complexity
of distributed protocols computing an approximation for the binary sum, and
show a sharp phase transition threshold of ≈

√
n on the magnitude of error

we allow in an analysis.

Keywords. Phase transition, Paris-Harrington theorem, Kanamori-McAloon
theorem, Ackermannian functions, rapidly growing Ramsey numbers, Fast
growing hierarchy, Threshold, Differential privacy, Secure Function Evalua-
tion, Sum Queries.
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Chapter 1

Introduction

1.1 Phase Transition

This thesis is an investigation of phase transition behaviors in combina-
torics and in distributed private data analysis. The notion of phase transition
originated in physics, where it is used to describe the transformation of a ther-
modynamic system from one phase to another. In physics, a phase transition
of a system is characterized by a small change in an underlying parameter of
the system, which causes an abrupt change in one or more physical proper-
ties of the system. A typical example is that of the transition of liquid water
into vapor at boiling point. It is now common to use the terminology of phase
transitions to describe systems exhibiting threshold behavior in other fields,
such as probability theory, statistics, computer science, combinatorics, logic,
economics, and political science. Many times, investigating the phase transi-
tion behavior of events in these fields by parameterizing the system, proving
it exhibits some threshold behavior, and then finding the location of a sharp
threshold point, yields profound understanding of some of the natural ques-
tions regarding these systems. This thesis follows the above paradigm in the
fields of Ramsey theory, function hierarchies, and distributed private compu-
tation.

The investigation of phase transition behavior in problems in mathematics
and computer science and applications of techniques from statistical physics
to a probabilistic variant of a known mathematical model, have flourished in
the last few decades. One classic example is found in the area of graph the-
ory. In the late 1950s and early 1960s, Erdős and Rényi [36, 37] introduced the
model of random graphs. A random graph G(n, p) over n vertices is sampled
by selecting edges independently, each with probability p = p(n). Erdős and
Rényi have already shown phase transition behaviors for properties of ran-
dom graphs. For instance, they considered the size of the largest component
of G(n, c/n) for a constant c > 0, and showed that it has order O(log n) w.h.p.
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if c < 1, and order θ(n) w.h.p. if c > 1.

In continuation to the work of Erdős and Rényi, much research was con-
ducted investigating phase transition phenomena in random graph theory
(see, e.g., [12, 13, 48, 11]). Friedgut and Kalai showed that every monotone
graph property has a sharp threshold [41]. Interestingly for the context of this
thesis, thresholds for Ramsey type properties of random graphs were consid-
ered (e.g., [42, 21]). Another topic where much research was done looking for
sharp thresholds, which attracted the attention of computer scientists as well
as physicists, is the area of computational complexity, and specifically the k-
SAT problem (see, e.g., [40, 2]). We note that here, again, the idea is to consider
the probability that an event occurs, i.e., a random CNF formula is satisfiable.
That is, for a formula over boolean variables x1, . . . , xn, obtained by uniformly
choosing M clauses (each of size k) of the possible 2n

(
n
k

)
and letting the formula

be the disjunction of the chosen clauses, we ask whether there is an assignment
of values to x1, . . . , xn that satisfies the formula. Sharp thresholds are known
to exist for each k ≥ 3 between satisfiability and unsatisfiability of a random
formula, as a function of the ratio between M and n [40]. The question of how
sharp these thresholds are is an open one. The reader is referred to [67] for
more on the phase transition behavior of the above problems and many other
probabilistic variants of mathematical and computation complexity problems,
such as MAX-CUT, percolation theory, and hardness of approximation.

Phase transition phenomena are not confined to probabilistic properties of
a system. By way of example, for the 3-SAT problem, we view the result of
[61] (or rather a corollary of it) as a sharp phase transition of the MAX-3-SAT
approximation problem at 7/8; that is, their result asserts that 3-SAT cannot
be efficiently approximated within a factor of 7/8 + o(1), unless P = NP, while
approximating MAX-3-SAT by a factor of 7/8 is known [50]. Much study of
such phase transition phenomena was conducted in recent years in the area of
logic and combinatorics. Less explicit phase transition results are at the heart
of the recent line of rigorous investigation of private data analysis. We next
mention a few of these works.

1.1.1 Phase Transition Phenomena in Logic and Combinatorics

The last few years have seen an unexpected series of results that bring
together independence results in logic, analytic combinatorics, and Ramsey
Theory. These results can be described intuitively as phase transitions from
provability to unprovability of an assertion by varying a threshold parameter
[4, 18, 57, 79, 81, 82, 75, 85, 84]. Another face of this phenomenon is the transi-
tion from slow-growing to fast-growing computable functions [80, 78, 83].
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Ramsey theory. Ramsey theory is a branch of combinatorics that deals with
the idea that within a sufficiently large system, however disordered, there
must be some order. The evolution of this field was sparked by the paper “On
a problem of formal logic” [71] by the British mathematician Frank P. Ramsey.
In this paper Ramsey was addressing a special case of the decision problem
for the first-order predicate calculus, proposed by David Hilbert, and proved
his most famous “Ramsey theorem” as a means for proving that special case.
It is now known that, not only did Ramsey not need his combinatorial argu-
ment for his proof, but that the general case of the decision problem cannot be
solved. Interestingly, even though he put some effort into trying to solve the
problem, Ramsey has criticized Hilbert saying that he had attempted to reduce
mathematics to “...a meaningless game with marks on paper”.

In Chapter 2 we state both the finite and the infinite versions of Ramsey’s
theorem and present a proof for the finite case. Let us describe a simple case
of a Ramsey type problem called “the party puzzle”. Given a natural number
k, we consider the least natural number N , such that in any party of N people,
there will always be either k of which all know each other, or k of which none
know each other. We say that N is the Ramsey number of k. The Ramsey
number of 3 is 6, the Ramsey number of 4 is 18, and the Ramsey number of 5
is only known to be within the interval [43, 49].

Gödel’s incompleteness. In 1931, Kurt Gödel [44], in a brilliant paper on
formally undecidable propositions, proved that for any consistent, effectively
generated formal theory that proves certain basic arithmetic truths, there is
an arithmetic statement such that neither it nor its negation is provable in the
theory. Gödel’s work implied that the proposal for the foundation of classical
mathematics known as Hilbert’s Program cannot be carried out. However, as
the propositions designed by Gödel to prove his incompleteness results were
of a very unique form and specifically were self-referent, one might have ques-
tioned the relevance of these results to so called natural propositions. For in-
stance, the question whether finite combinatorial theorems that are indepen-
dent of powerful axiomatic systems such as first-order PA (Peano Arithmetic)
can be discovered, was still valid at the time Gödel’s work was published.

Paris-Harrington Gödel Sentence. J. Paris made some important advance in
the late 1970s. Building on joint work with L. Kirby, he used model-theoretic
techniques to investigate arithmetic incompleteness and proved theorems of
finite combinatorics that were unprovable in PA [65]. Later, in [66], J. Paris and
L. Harrington went on to present a proof that a straightforward variant of the
familiar finite Ramsey theorem is independent of PA. We next state the main
theorem of their work.
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Theorem (Paris Harrington [66]): A nonempty H = {x1, . . . , xℓ} ⊆ N (where
x1 < x2 < . . . < xℓ) is relatively large if |H| ≥ x1 (i.e., |H| ≥ min(H)).

1. PH ≡ For any natural numbers k, c, d > 0 there exists an N ∈ N such
that for any coloring C of all d-tuples over {0, . . . , N − 1} with colors
{0, . . . , c− 1}, there is a relatively large H ⊆ {0, . . . , N − 1} that is homo-
geneous for C and of cardinality at least k.

2. There is no proof from PA of PH.

The Paris Harrington Ramsey number of k and c, and d, denoted R∗(k, c, d),
is the least N that satisfies the requirement in the Paris Harrington theorem
for k, c, and d. By way of example, if N = R∗(k, 3, 2), then for every color-
ing of pairs over {0, . . . , N − 1} with 3 colors (say, red, green, and blue) there
exists a set H = {x1, . . . , xℓ} ⊆ {0, . . . , N − 1} (where x1 < x2 < . . . , < xℓ),
such that ℓ > max {k, x1} and C restricted to H is constant (i.e., for some
c ∈ {red, green, blue} it holds that f(xi, xj) = c for all xi, xj ∈ H).

We will mainly be interested in the case of pair colorings (i.e., d = 2) and we
denote R∗(k, c) = R∗(k, c, 2). Erdős and Mills [33] showed that R∗(·, ·) grows
eventually faster than any primitive recursive function. On the other hand, for
a fixed number of colors the resulting Ramsey function is primitive recursive.
The result of [33] can also be phrased as an unprovability result by considering
the fragment of Peano arithmetic IΣ1 (induction restricted to Σ1 arithmetical
formulas). Recall that the provably total functions of IΣ1 are exactly the prim-
itive recursive functions. Thus, the proposition PH, restricted to colorings of
pairs, is unprovable from IΣ1.

By Paris Harrington [66], R∗(k, c, d) is also not primitive recursive. More-
over, it grows much faster than standard examples of non-primitive recursive
functions such as the Ackermann function, since it cannot be proven to be
totally defined from the axioms of PA, while PA easily proves that the Acker-
mann function is well defined.

By omitting the relatively-largeness requirement from the PH proposition
we get the standard Ramsey theorem, which is provable in PA. Similarly, by
omitting the relatively-largeness requirement from the restriction of PH to pair
colorings we get the standard Ramsey theorem for pairs, which is provable
in IΣ1. These observations call for some parameterization of the largeness
requirement. Given a function g : N → N, we say that H is g-large if |H| ≥
g(min(H)). Note that for our purpose it makes sense to consider g such that
g(n) < n, since a relatively large H is exactly Id-large.

Now, replacing the relatively-largeness requirement in PH with g-largeness
for different functions g, we ask: For which functions g do we obtain a propo-
sition that is provable in PA? For a fixed tuple size d and a given g, is the
resulting proposition provable in PA? is it provable in IΣd? is it provable in
IΣ1?
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Some of these questions are considered in [81, 57] and sharp thresholds are
presented for g in the considered cases. A survey of these results and more
thresholds between provability and unprovability results as well as an illus-
tration of the similarities in the techniques for achieving unprovability results
is given by Bovykin [14]. Pudlák [70] notes some interesting connections of
these unprovability results to the theory of computational complexity.

In Chapter 4 we consider the case of d = 2 and we define the appropriate
g-large Ramsey number. We look for the threshold g between provability and
unprovability somewhere between the two known extremes, i.e., one where
g is constant and the other where g = Id. When g is constant the resulting
proposition is provable in IΣ1 (i.e., the g-large Ramsey number is primitive
recursive). If g = Id then the resulting proposition is unprovable in IΣ1 (i.e.,
the g-large Ramsey number is not primitive recursive).

We stress that in Chapter 4 we only consider the combinatorial behavior of
these Ramsey functions and show that a sharp threshold exists and lies above
all functions log(n)/f−1(n) obtained from an increasing primitive recursive f
and below the function log(n)/Ack−1(n). Worded differently, for a nondecreas-
ing and unbounded g to have primitive recursive g-large Ramsey numbers, it
is necessary and sufficient that g is eventually dominated by log(n)/t for all
t > 0 and that the rate at which g gets below log(n)/t is not too slow, namely, is
primitive recursive in t: if g gets below log(n)/t only after an Ackermannianly
long time M(t), then the g-large Ramsey numbers are still Ackermannian.

Regressive Ramsey Gödel Sentences. A few years after the publication of
the Paris Harrington work, A. Kanamori and K. McAloon [49], trying to avoid
the notion of relative largeness and to give a simpler proof of independence
of PA than the one presented in [66], introduced the regressive Ramsey the-
orem. This was yet another Ramsey type result, which can be stated in first
order logic, and is independent of PA. Before presenting the main results of
Kanamori and McAloon [49], we introduce the notion of regressive colorings.
A coloring C of d-tuples over some set X ⊆ N with natural numbers (as colors)
is regressive if for every d-tuple s of elements in X we have C(s) ≤ min(s).

By way of example, let d = 2 and define a coloring of pairs of natural
numbers C(x, y) = x (assuming x < y). Note that C is regressive. On the other
hand, there is no C-homogeneous set H ⊆ N such that |H| > 2.

Theorem (Kanamori and McAloon [49]): A set H ⊆ X is min-homogeneous
for a coloring C if for all d-tuples s, t over H , the equality min(s) = min(t)
implies C(s) = C(t).

1. KM ≡ For every k > 0 and d > 0 there exists an N such that for every
regressive coloring of d-tuples from {0, . . . , N − 1} there exists a min-
homogeneous subset of size k.
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2. KM cannot be proved from the axioms of PA (although it can be phrased
in the language of PA).

3. Let Rreg(k) be the least N which satisfies KM for d = 2. The function
Rreg(·) eventually dominates every primitive recursive function.

4. Let R′ reg(k) be the least N which satisfies KM for k = 2d. The function
R′ reg is not provably total in PA and eventually dominates every prov-
ably recursive function of PA.

Similarly to the case for PH, we can parameterize these statements. Here,
g will be a parameter controlling the number of colors, requiring a coloring
to be g-regressive instead of regressive. Informally, for a given function g we
consider colorings C such that for every s it holds that C(s) ≤ g(min(s)). For
constant g we obtain a weaker version of the standard Ramsey theorem (thus,
provable in PA). Again, we will mainly be concerned with the case of d =
2 (where for constant g we obtain a weaker version of the standard Ramsey
theorem for pairs, which is provable in IΣ1).

Thus, questions very similar to the ones related to PH arise: for which g
does the KM proposition for g-regressive colorings stop being provable from
PA; for a given d > 1, for which g does the KM proposition for d-tuples and g-
regressive colorings stop being provable from IΣ1? (and from what fragments
of PA is it still provable then?); are there sharp thresholds defining these tran-
sitions from provability to unprovability?

The case of a fixed d (the size of tuples we color) was considered by [57]
and this result was later improved in [18]. In Chapter 3 we address the case of
d = 2 and look for a threshold function for this transition from provability to
unprovability, that is, from primitive recursiveness of the g-regressive Ramsey
number (formally defined in Chapter 3) to its becoming Ackermannian. We
consider the combinatorial behavior of these Ramsey numbers and show that
a sharp threshold exists and lies above all functions n1/f−1(n) obtained from
a primitive recursive f and below n1/Ack−1(n). Worded differently, for a non-
decreasing and unbounded g to have primitive recursive g-regressive Ramsey
numbers it is necessary and sufficient that g is eventually dominated by n1/t

for all t > 0 and that the rate at which g gets below n1/t is not too slow: if g gets
below n1/t only after an Ackermannianly long time Mt, then the g-regressive
Ramsey numbers are still Ackermannian.

We also identify the threshold below which g-regressive colorings have
usual Ramsey numbers, that is, admit homogeneous, rather than just min-
homogeneous sets, and give a lower bound of A53(2

2274) on the Id-regressive
Ramsey number of k = 82, where A53 is the 53-rd approximation of Acker-
mann’s function.

We remark that in both Chapter 3 and Chapter 4 we never explicitly men-
tion the concept of provability and the discussion is purely combinatorial.
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Phase transition in function hierarchies. As mentioned above, the phase
transition between provability and unprovability can be defined in terms of
growth rate of functions (which is the way we present our discussion in Chap-
ter 3 and in Chapter 4). Another natural combinatorial question is to investi-
gate the growth rate of functions obtained via diagonalization from an itera-
tion hierarchy of Grzegorczyk type (see e.g., [52, 69]).

Assume that we are given two functions g, h : R ∩ [0,∞) → R ∩ [0,∞). For
r ∈ R, let ⌊r⌋ denote the largest integer not exceeding r. We then consider the
following diagonalization: For x ∈ N, let

B(g, h)0(x)
∆
= g(x), and let

B(g, h)k+1(x)
∆
= B(g, h)

⌊h(x)⌋
k (x) i.e. ⌊h(x)⌋ many iterations,

B(g, h)ω(x)
∆
= B(g, h)⌊x⌋(x).

For example, the Ackermann function is defined as Ack(n) = B(g, h)ω(n),
where g(x) = x + 1 and h = Id, and Ai(n) = B(g, h)i(n). The question arises:
for which pairs of functions g, h is the resulting diagonalization primitive re-
cursive? When does it become Ackermannian?

In Chapter 5 we study for a given start function g iteration hierarchies with
a sub-linear modulus h of iteration. In terms of g and h we classify the phase
transition for the resulting diagonal function from being primitive recursive to
being Ackermannian.

Specifically, fixing g(x) = x + 1 (as in the Ackermann hierarchy), we in-
vestigate the threshold function h at which the resulting hierarchy stops be-
ing primitive recursive and becomes Ackermannian. We show that a sharp
threshold for h exists and that it is intrinsically related to g-regressive Ramsey
numbers.

We then consider a class of start functions g (starting with g(x) = x + ε for
0 < ε ≤ 1 and constantly increasing them). We show appropriate classes of
iteration modulus h for which the resulting classes of hierarchies are slow-
growing and later we show appropriate classes of iteration modulus h for
which the resulting classes of hierarchies are fast-growing. These two classes
are very similar, but yet result in extremely different growth rates.

1.2 Phase Transition Phenomena in Private Data Anal-
ysis

In private data analysis our goal is to compute some functionality f̂ applied
to a set of data gathered form individuals with an overall privacy requirement
to protect the private information of individuals. The challenge is therefore
imposed by the inherent tension between the need to compute some valuable
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estimation of f̂ (utility) on the one hand, and the need to protect the infor-
mation of individuals (privacy) on the other. A classic example is a hospital
database containing medical records of patients. This example illustrates well
the tension between utility and preserving privacy. The hospital, which would
like to enable valuable medical research based on the information stored in the
database, must ensure, for ethical as well as legal reasons, that the privacy of
its patients is protected, i.e., no information regarding the medical condition
of any specific patient can be “traced back” to that individual.

To model private computation we consider the setting of a statistical database
containing n records x = (x1, . . . , xn), where each xi is the information of an
individual, taken from some domain D. The interface between users and the
database is defined by queries. Users can present a query q and get as reply an
approximation of q(x) (i.e., the result of the algorithm of the database applied
to q,x) that preserves individual privacy. A vast body of work on private data
analysis has been published by researchers from different areas; however, we
base our research on a line of rigorous investigation of what is safe to compute,
which was initiated by the seminal paper of I. Dinur and K. Nissim [23].

In their work, Dinur and Nissim investigate the trade off between utility
and privacy, and show a threshold of the amount of noise (perturbation) that
must be added to queries in order to prevent strong violation of privacy. For
the lowerbound, they consider an n-bit statistical database and show that any
database algorithm for answering subset-sum queries that almost always an-
swers with o(

√
n) perturbation, is strongly non-private (with respect to poly-

nomial time adversaries). This impossibility result is not obtained under a
specific definition of privacy, but rather by defining a database algorithm that
enables an adversary (computationally bounded) to reconstruct all but a small
fraction of the entries in the database.

In contrast to this impossibility result, Dinur, and Nissim show that once
we allow added perturbation of magnitude Õ(

√
n), it is possible to present a

database that is private against polynomial adversaries in the strongest pos-
sible sense. That is, if the database is queried by a polynomial-time machine,
then with extremely high probability it does not reveal any information about
the data.

One way Dinur and Nissim suggest to understand their impossibility result
is by viewing the set of query-response pairs as an encoding of the database,
while the goal of the adversary is to efficiently decode this encoding even with
the presence of some noise. Specifically, the lowerbound of [23] is obtained by
considering the following error correction scheme. Given an n-bit string x, the
encoder computes y = A(x), where A is an m×n binary matrix (of which each
entry is selected uniformly and independently). Then the encoded message
is corrupted by adding some noise vector e of n entries, each with absolute
value at most

√
n, and obtaining y′ = x + e. Finally, an adversary, knowing
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both A and y′ is asked to approximate x; that is, find x′ which agrees with x
on all but some ε fraction of the entries. The way the adversary finds such
approximation is by solving a linear program.

To clarify the translation from the above scheme to the result of non-privacy
in the statistical database model, we let each row of A be a subset-sum query
and the appropriate entry in e be the perturbed response to that query. The
adversary can sample the m rows of A and send them, one by one, to the
database and obtain e. Finally, by solving the linear program the adversary
reconstructs most entries in the database. We note that for the result of [23], it
suffices to take m = n(log n)2.

The work of Dinur and Nissim [23] initiated a line of works conducting
rigorous investigation of the notion of private data analysis. The definition
we work with – differential privacy – seems to entail some natural but essential
properties, and proved to be robust. This definition has evolved in a sequence
of works [23, 38, 30, 9, 27, 24, 25]. Informally, a computation is differentially
private if any change in a single individual input may only induce a small
change in the distribution of its outcomes (see Chapter 6 for the formal defini-
tion).

A few works have considered the limitations on what can be privately com-
puted, much in the spirit of the lowerbound of [23]. The impossibility result of
[23] has left open the question of whether a database can still preserve the pri-
vacy of individual records when adding much noise to a small fraction of the
answers, while letting the remaining answers be fairly accurate. Dwork et al.
[28] explored this direction by considering an error correcting scheme some-
what similar to that appearing in [23], with the difference that they allowed
the entries of the matrix A to be normal random variables (rather than only
allowing binary entries). They show that this attack, on any database mech-
anism answering at least 0.761 of the queries with an α-small additive error
(perturbation), yields with very high probability a reconstruction of all but an
O(α2) fraction of the entries in the database. Taking α = o(

√
n) we obtain sim-

ilar parameters to those of [23] (only with many more unboundedly perturbed
responses).

It is interesting to note that Dwork et al. [28] showed that their result is
tight with respect to this attack. This stems from their more general result on
the above error correcting scheme, where they show 0.761 to be a sharp thresh-
old on the fraction of codeword coordinates that can sustain large corruption.
Different attacks are considered by Dwork and Yekhanin in [31]. They use
Fourier transforms for an attack that sharpens the result of [23] by reducing
the number of required queries to n, the running time of the reconstruction
algorithm, and by eliminating randomness (and hence the probability of fail-
ure). Dwork and Yekhanin [31] also present attacks that use polynomial inter-
polations to reconstruct a database that may answer up to 1

2
− ε of the queries,

adding an unbounded amount of noise (but, must answer all others using very
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little additive noise).
Once a definition of privacy has been formalized, the important and in-

triguing question of what set of analyses can be privately computed arises.
The impossibility results described above were complemented by a long line
of studies. Much work was done proving possibility results and constructing
private data analysis mechanisms (see e.g. [30, 9, 27, 63, 5, 59, 10]) and some
interesting and sometimes surprising relations were explored between private
data analysis and other research areas, such as learning [9, 51] and mecha-
nism design [59, 43]. The question of what can be privately computed in a
distributed setup is also beginning to get some attention (see [25]). The next
section briefly describes the distributed model.

1.2.1 Distributed Private Data Analysis

The distributed communication model has been considered in classic cryp-
tography since the early 80s. For example, in secure function evaluation (SFE),
we consider n parties p1, . . . , pn, each holding a private input xi, trying to
distributively compute a function f applied to their inputs, with the require-
ment that an adversary may not gain any information other than the value of
f(x1, . . . , xn). This requirement is insufficient for individual privacy if, for in-
stance, f applied to private inputs x1, . . . , xn reveals “too much” information
about one or more of its private inputs, then any implementation of f would
do so too.

However, since any feasible functionality can also be securely computed
in the distributed setup, it is natural to use the following paradigm for con-
structing distributed protocols for differentially private analyses: first choose
an analysis (i.e., choose what to compute) while abstracting away implementa-
tion issues (e.g., by assuming that the computation is performed by a trusted
server holding the data), then construct a secure protocol for this analysis (i.e.,
choose how to compute).

For example, this approach is the idea behind the SFE protocols presented
in [25] for efficient generation of the noise. The protocols are secure in the
presence of malicious, computationally bounded parties. Such noise genera-
tion can be used as part of a distributed computation of many private analyses.

On the other hand, the privacy requirement of SFE is sometimes too strict
for our needs, e.g., consider the binary sum over n entries, where half of the
entries are 1 and the other half are 0. An SFE protocol does not allow us to tell
the difference between this database and its exact complement (obtained by
flipping the bit of every entry). In differential privacy, we are allowed to tell
the difference with very high probability.

Thus, the natural paradigm for constructing differentially private protocols
may result in non-optimal protocols. In Chapter 7 we initiate an examination
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of whether indeed there are advantages in giving up the nice modularity prop-
erty of the natural paradigm. Alternatively, we examine a paradigm wherein
both a differentially private analysis and the distributed protocol (not neces-
sarily SFE) for implementing it, are constructed simultaneously.

In particular, we consider the case of binary sum queries f =
∑n

i=1 xi

(where each party holds a sensitive bit xi) in the honest-but-curious setting,
where coalitions of at most t players are allowed. Intuitively, in this setting,
the parties follow the prescribed protocol, however, after the execution of the
protocol terminates, coalitions of at most t players may work together and try
to infer information about other players.

We show a phase transition behavior depending on the magnitude of error
we allow in our analysis. Specifically, if we can settle for an approximation
with additive error ≈

√
n, then the (non-SFE) randomized response protocol,

suggested by Warner in 1965 [77], achieves exactly that, using a total of n mes-
sages. On the other hand, any secure protocol for a symmetric approximation
using less than nt/4 messages yields an additive error that is linear in n.

In contrast, we show a lowerbound asserting that the randomized response
protocol is optimal for low-communication protocols and thus, if we require an
additive error of magnitude less than

√
n, we might as well follow the natural

paradigm. Our lowerbound also yields a separation between the local and
the global models, as well as a separation between the computational and the
information theoretic settings.

1.3 Organization

This thesis consists of discussions both in the area of combinatorics and
in the area of private data analysis. These two worlds coincide and share
many conceptual notions. However, notations and definitions, as well as re-
lated works needed in each discussion, differ somewhat. The structure of the
thesis as described next, is designed to allow the reader to easily recall relevant
background.

In Chapter 2 we give necessary background in Ramsey theory, and the no-
tations and definitions used in Chapter 3, Chapter 4, and Chapter 5. In Chap-
ter 3 we study the phase transition behavior of g-regressive Ramsey numbers
(these results are taken almost verbatim from [55]). In Chapter 4 we study the
phase transition behavior of g-large Ramsey numbers (these results are taken
almost verbatim from [55]). In Chapter 5 we study the phase transition be-
havior of function hierarchies (these results are taken almost verbatim from
[64]). In Chapter 6 we give the notations and definitions used in Chapter 7. In
Chapter 7 we study the phase transition behavior of distributed private data
analysis protocols (these results are taken almost verbatim from [6]). Finally,
in Chapter 8 we conclude our results and suggest some future work.
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Chapter 2

Some Background in Ramsey
Theory

This chapter contains the notations and basic definitions used in Chapter 3,
Chapter 4, and Chapter 5, and it surveys some of the basic results in Ramsey
theory offering a broader view for the discussion presented in these chapters.

The reader may want to skim through this chapter, since in most cases
we follow the standard notations and definitions used in the literature (e.g.,
in [47]). Moreover, all propositions given in this chapter are known, and the
proofs given for some of them are not essential for the understanding of our
result. These proofs are presented here to give the reader some additional intu-
ition for the propositions and the types of arguments used in proofs of Ramsey
type propositions. Some definitions and notations that are more specific to this
work are the ones concerning g-large and g-regressive Ramsey numbers and
they are discussed in Section 2.3.3 and Section 2.3.5, respectively.

Let N denote the set of all natural numbers including 0 and let ω denote
its cardinality. A number d ∈ N is identified with the set {n ∈ N : n < d},
which may also be denoted by [d]. The set of all d-element subsets of a set X
is denoted by [X]d. For a function C : [X]d → N we write C(x1, . . . , xd) for
C({x1, . . . , xd}) under the assumption that x1 < · · · < xd. For an unbounded
and nondecreasing function g : N → N, define the inverse function g−1 : N → N
by

g−1(m) :=

{
ℓ if ℓ := min{i : g(i) ≥ m} > 0 ,

1 otherwise (if g(0) ≥ m) .

2.1 Primitive Recursive Functions

Primitive recursive functions are functions from tuples of natural numbers
to natural numbers. The set of primitive recursive functions is a proper subset
of the recursive (or computable) functions.
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Definition 2.1.1 (Primitive recursive functions). A function that takes n argu-
ments (an n-tuple) is called n-ary. The basic primitive recursive functions are given
by the following three axioms:

1. The constant function 0 is primitive recursive.

2. The successor function S, which takes one argument and returns the succeeding
number as given by the Peano postulates, is primitive recursive.

3. The projection functions Cn
i (x1, ..., xn) = xi, which take n arguments and re-

turn one of them, are primitive recursive.

More complex primitive recursive functions can be obtained by applying the operators
given by the following pair of axioms:

1. Composition: Given f , a k-ary primitive recursive function, and k l-ary prim-
itive recursive functions g0, ..., gk−1, the composition of f with g0, ..., gk−1, i.e.,
the function h(x0, ..., xl−1) = f(g0(x0, ..., xl−1), ..., gk−1(x0, ..., xl−1)) is primi-
tive recursive.

2. Primitive recursion: Given a k-ary primitive recursive function f and a (k +
2)-ary primitive recursive function g, the (k + 1)-ary function defined as the
primitive recursion of f and g, i.e., the function h where h(0, x0, ..., xk−1) =
f(x0, ..., xk−1) and h(S(n), x0, ..., xk−1) = g(h(n, x0, ..., xk−1), n, x0, ..., xk−1),
is primitive recursive.

A function is primitive recursive if it is one of the basic functions above, or can be
obtained from the basic functions by applying the operations a finite number of times.

In other words, the class of primitive recursive functions is the smallest
class of functions from Nd to N for all d ≥ 1 that contains the constant func-
tions, the projections, and the successor function and is closed under compo-
sition and recursion. This class is also closed under bounded search, frequently
referred to as bounded µ-operator. See, e.g., [68, 17] for more details about the
class of primitive recursive functions.

2.2 Ackermannian Functions

Given two functions f, g : N → N, we say that g eventually dominates or
grows eventually faster than f if there is some N so that for all i ≥ N it holds
that f(i) ≤ g(i). In that case we also say that f is eventually dominated by
g. We call f nondecreasing if for any i < j we have f(i) ≤ f(j). A function
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h : N → N is unbounded if for every N ∈ N there exists an i such that h(i) > N .
For any function f : N → N, the function f (n) is defined by f (0)(x) = x and
f (n+1)(x) = f(f (n)(x)).

Definition 2.2.1 (The Ackermann function). The Ackermann function is defined
as Ack(n) = An(n) for all n > 0 (and, say, Ack(0) = 0) where each An is the standard
n-th approximation of the Ackermann function, defined by:

A1(n) = n+ 1

Ai+1(n) = A
(n)
i (n).

Let us record that Ack(1) = 2, Ack(2) = 4, Ack(3) = 24, and 22
270

< Ack(4) <

22
271 . We remark that although Ack is not primitive recursive, its inverse Ack−1

is primitive recursive.
It is well known (see e.g., [17]) that each approximation An is primitive re-

cursive and that every primitive recursive function is eventually dominated by
some An. Thus, the Ackermann function eventually dominates every primitive
recursive function.

Definition 2.2.2 (Ackermannian functions). A function g : N → N is said to be
Ackermannian if it grows eventually faster than every primitive recursive function.

There is no smallest Ackermannian function: if f is Ackermannian, then so
is i 7→ f(i)/2 or i 7→ f(i)1/2, etc. It is also important to note that there are func-
tions f : N → N which are neither Ackermannian nor eventually dominated
by any primitive recursive function.

Lemma 2.2.3. If the composition f ◦ g of two nondecreasing functions is Ackerman-
nian and one of f and g is primitive recursive, then the other is Ackermannian.

Proof. If f is primitive recursive, then g should be Ackermannian. Assume
now g is primitive recursive. Note that g is not bounded. And, given a primi-
tive recursive function p, the function h(n) := p(g(n+1)) is primitive recursive
too, so there is some N such that f(g(n)) ≥ h(n) = p(g(n + 1)) for all n ≥ N .
Since we can assume w.l.o.g. that p is nondecreasing, it holds for all i ≥ g(N)
that f(i) ≥ f(g(n)) ≥ p(g(n + 1)) ≥ p(i), where g(n) ≤ i ≤ g(n + 1) for some
n ≥ N . Hence f is Ackermannian.

2.3 Ramsey Theory

Much of the discussion of Chapters 3, 4, and 5 deals with the behavior of
Ramsey type propositions, i.e., propositions regarding the cardinality of vari-
ous partition relations. In this section we describe some of the known results
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in Ramsey theory and their variants, obtained by parameterizing the partition
relation with respect to functions g : N → N.

Let us recall the standard Ramsey theorem.

Definition 2.3.1. For a k-ary function f over a set A and for a given B ⊆ A we use
f � [B]k to denote the restriction of f to [B]k, i.e.,

{
(x, f(x)) : x ∈ [B]k

}
.

Given a coloring C : [X]d → N, a set H ⊆ X is homogeneous for C (or C-
homogeneous) if it holds C � [H]d is constant. The symbol

X → (k)dc

means: for every coloring C : [X]d → c there exists H ⊆ X such that |H| ≥ k and H
is homogeneous for C. In case d = 2, we just write

X → (k)c.

Ramsey [71] established the Infinite Ramsey theorem:

∀d, c > 0 N → (N)dc

as well as the finite Ramsey theorem:

∀d, c, k > 0 ∃m ∈ N m → (k)dc .

Below we present a proof for the finite version of the Ramsey theorem for
pairs (i.e., the case for d = 2). The case for general d can be thereafter obtained
by induction on d. The proof of the infinite Ramsey theorem follows the same
technique and is in fact simpler than the proof below. Before going on to de-
scribe the proof, let us present a generalization of the notion of homogeneity.

Definition 2.3.2. For a coloring C : [X]d → N, a set H ⊆ X is min-homogeneous
for C, if C(x, x2, . . . , xd) = C(x, y2, . . . , yd) for all x, x2, . . . , xd, y2, . . . , yd ∈ H (i.e.,
for every x ∈ [X]d the color C(x) is completely determined by min x).

The symbol
X

min→ (k)dc

means: for every coloring C : [X]d → c there exists H ⊆ X such that |H| ≥ k and H
is min-homogeneous for C. In case d = 2, we just write

X
min→ (k)c.

The standard Ramsey number denoted R(k, c) is the least N such that N →
(k)c. Let Rmin(k, c) denote the least N so that N min→ (k)c. Note that Rmin(k, 1) = k
and Rmin(2, c) = 2. We now recall the standard proof of the finite Ramsey
theorem and show that it yields for c, k ≥ 2:

(1) ck
min→ (k)c and (2) ck·c → (k)c

That is, R(k, c) ≤ ck·c and Rmin(k, c) ≤ ck for any c, k ≥ 2.
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Proof. (1) Given c, k > 1 and a coloring C : [ck]2 → c, we construct a set B ∈
[ck]k by forming two sequences, {bi}ki=0 and {Bi}ki=0, recursively. We set b0 = 0
and B0 = {0, . . . , ck − 1}. Now, assume we have bi and Bi for i ≥ 0 such
that |Bi| ≥ ck−i, we denote Sj = {a ∈ Bi : a ̸= bi and C(bi, a) = j}. By
the pigeonhole principle and because k > 1, there exists some 0 ≤ j ≤ c so
that |Sj| ≥ |Bi|

c
≥ ck−i−1. We set Bi+1 to be a largest Sj and we set bi+1 to be

min(Bi+1). Obviously, we can repeat the induction step at least k times. Thus,
we end up having a sequence B = {b0, b1, ...bk}, which is a min-homogeneous
set for f of size k + 1.

To verify (2), we only need to notice that by the above proof of (1), given
c, k > 1 and a coloring C : [ckc]2 → c, we are guaranteed to have a set B =
{b1, b2, . . . , bkc}, which is min-homogeneous for C. Let {c1, c2, . . . , ckc} be the
set of colors such that ci = C(bi, bj) for all j > i. Again, by the pigeonhole
principle, there exists a set I ⊆ {1, 2, . . . , kc} of size k, such that for any i, j ∈ I ,
ci = cj . Hence, the set A = {bi ∈ B : i ∈ I} is homogeneous for C and is of size
k.

It it is also known for R(k) = R(k, 2), that 2k/2 < R(k) < 22k. The left
inequality is shown by a simple probabilistic argument (see [3]), the right in-
equality stems from the proof above.

2.3.1 The Canonical Ramsey Theorem

In 1950, Erdős and Rado [34] proved a generalization of Ramsey’s theorem
with no restrictions on the number of colors. For a coloring C : [X]d → N
where X ⊆ N, we say that H ⊆ X is canonical for C if there is a set of indices,
I ⊆ d, so that for all s, t ∈ [H]d we have C(s) = C(t) ↔ s � I = t � I , where if
p = {p1, . . . , pd}, then p � I = {(i, pi) : i ∈ I}. We write I = I(H) when I makes
H canonical. By way of example, if I(H) = ∅, then H is homogeneous for C in
the usual sense, and if I(H) = d then C is injective on [H]d.

Let us give a few examples of canonical sets:

• Let C be a coloring with domain [N]3, defined by C(x0, x1, x2) = x0 +
x1 + x2. One can observe that if H ⊆ N is infinite and canonical for C,
then I(H) = 0, 1, 2. One such set would be {2k : k ∈ N}. Now, for any
x0 < x1 < x2, y0 < y1 < y2 ∈ H so that there exists an index i ∈ {0, 1, 2}
such that xi ̸= yi, let i be that maximum such index and assume, without
loss of generality, that xi < yi. It holds that x0 + · · · + xi < yi and thus,
C(x0, x1, x2) < C(y0, y1, y2).

• Let C be a function with domain [N]3, defined by C(x0, x1, x2) = x0+x1+
x2 mod 10. Here we may choose H ⊆ N to be {10k : k ∈ N} and have
I(H) = ∅, as for any x0 < x1 < x2 ∈ H it holds that C(x0, x1, x2) = 0.
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Using the infinite Ramsey theorem, Erdős and Rado proved:

Theorem 2.3.3 ([34]). For all natural d > 0 and for every coloring C : [N]d → N,
there exists an infinite H ⊆ N which is canonical for C.

Theorem 2.3.3 is proved by induction on d and the infinite Ramsey theorem,
which, in turn, might also be seen as a corollary of Theorem 2.3.3, since the ‘↔’
requirement in the definition of canonical asserts that if the number of colors
is finite, then I = ∅ is the only possible case.

Using compactness one can establish the finite version of the canonical
Ramsey theorem.

Theorem 2.3.4. For all natural k, d > 0 there exists N ∈ N such that for every
coloring C : [N ]d → N there exists H ∈ [N ]k which is canonical for C.

Before proving Theorem 2.3.4 we first state the canonical Ramsey theorem
for pairs (i.e., the case where d = 2), and present a proof for this case to illus-
trate the basic idea used for the proof of the infinite case (i.e., Theorem 2.3.3).

Theorem 2.3.5. For every coloring C : [N]2 → N there exists an infinite H ⊆ N
which is canonical for C.

Proof. Let {α0, α1, . . . , α5} be the set of all unordered pairs over {0, 1, 2, 3} and
let {β0, β1, . . . , β14} be the set of all unordered pairs over {α0, α1, . . . , α5}. Now
define g : [N]4 → 215 as

g(x0, x1, x2, x3) = (yβ0 , yβ1 , . . . , yβ14),

where for βi = ((i1, i2), (j1, j2)), we denote

yβi
=

{
1 if C(xi1 , xi2) = C(xj1 , xj2);
0 otherwise.

In other words, g describes an equivalence relation induced by C on [N]4,
which obviously has a finite number of classes. Thus, by the infinite Ram-
sey theorem, there exists an infinite A ⊆ N that is homogeneous for g. We now
show that f � A is canonical.

We first examine two main cases:

1. There exist a1 < a2 < a3 in A such that C(a1, a2) = C(a1, a3). If this
is the case, then by the definition of g, for all x1 < x2 < x3 in A it
holds that C(x1, x2) = C(x1, x3). This is true because g(a1, a2, a3, z1) =
g(x1, x2, x3, z2), for every z1 > a3, z2 > x3.

2. There exist a1 < a2 < a3 in A such that C(a1, a3) = C(a2, a3). If this is the
case, then by the definition of g, for all x1 < x2 < x3 in A it holds that
C(x1, x3) = C(x2, x3).
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Now, let us consider the possible sub-cases for A:

• If both Case 1 and Case 2 hold, then C is constant on A, that is, C � A is
canonical with I(A) = ∅. This is true, as for any x1 < x2 < x3 in A it holds
that C(x1, x3) = C(x2, x3) = C(x1, x2). Thus, for any x1 < x2, x1 ≤ x3 < x4

in A, if, either x1 = x3 or x2 = x4, then by Case 1 and Case 2 it holds
that C(x1, x2) = C(x3, x4). Otherwise C(x1, x4) = C(x2, x4) = C(x1, x2)
(regardless of the ordering of x2 and x4), and C(x1, x4) = C(x3, x4) =
C(x1, x3) and so, again we get that C(x1, x2) = C(x3, x4).

• If Case 1 holds and Case 2 fails, then C � A is canonical with I(A) = {0}.
To show this we only need verify that there do not exist x1 < x2, x3 < x4

in A such that x1 < x3 but C(x1, x2) = C(x3, x4). Assume to the contrary
that such x1, x2, x3, x4 do exist. Because g is constant on all 4-tuples, we
can assume x1 is not the smallest element in A. Let x0 < X1 be yet another
element of A. Because g(x0, x2, x3, x4) = g(x1, x2, x3, x4) (if x2 = x3 or
x2 = x4 then look at g(x0, x2, x4, z) = g(x1, x2, x4, z) for some z ∈ A such
that z > x4) we may conclude that C(x0, x2) = C(x3, x4) = C(x1, x2)
contrary to failure of Case 2.

• If Case 1 does not hold, but Case 2 does, then C � A is canonical with
I(A) = {1}. This is shown in a very similar manner to the former case.

• If neither Case 1 nor Case 2 hold, then C � A is canonical with I(A) =
{0, 1}. Let us show that by assuming to the contrary that there exist
x1, x2, x3, x4 ∈ A such that x1 < x3 and x2 ̸= x4 but C(x1, x2) = C(x3, x4).
Again, because g is constant on all 4-tuples, we may assume that x1 is
not the smallest element in A. Let x0 < x1 be an element of A. If x2 ̸= x3,
we get g(x0, x2, x3, x4) = g(x1, x2, x3, x4), otherwise choose z ∈ A so that
z > x4 and now we have g(x0, x2, x4, z) = g(x1, x2, x4, z), and in either
case, we may conclude that C(x0, x2) = C(x3, x4) = C(x1, x2) contrary to
failure of Case 2.

We now present a proof of the finite canonical Ramsey theorem (Theo-
rem 2.3.4). We establish it from the infinite canonical Ramsey theorem by
means of compactness. In order to do that, we first present the notion of
equivalent colorings. Two colorings C1, C2 of [X]d are equivalent if for all
s1, s2 ∈ [X]d, it holds that C1(s1) = C1(s2) ⇐⇒ C2(s1) = C2(s2), that is,
they induce the same partition of [X]d. Obviously, if C1, C2 are equivalent and
there exists no set H ∈ [X]k canonical for C1, then there exists no set H ∈ [X]k

canonical for C2.
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Proof of Theorem 2.3.4. Assume to the contrary that the finite canonical Ramsey
theorem does not hold. Then there exist k, d > 0 such that for any m ∈ N there
is a counterexample Cm : [m]d → N which is “bad” in the sense that there is
no H ∈ [m]k canonical for Cm. Observe that for any such bad Cm there exists
an equivalent c′m such that for every s ∈ [m]d, it holds that c′m(s) ≤

(
max(s)

d

)
.

This is true since for any l ∈ N there may be at most
(
l
d

)
colors used to color all

elements of [l]d. Let T be the set of all bad colorings

T = {C : [m]d → N : m ∈ N and C is such that ∀s ∈ [m]d, C(s) ≤
(
max(s)

d

)
and there is no H ∈ [m]k canonical for C}.

Define a binary relation ≺ on colorings, by C1 ≺ C2 iff C1 ⊆ C2 and there
is no C3 such that C1 ⊆ C3 ⊆ C2. We claim that ⟨T,≺⟩ infinite tree with a
finite number of nodes at any level i. First, it is clear that T is infinite, as
there exist infinitely many counterexamples. Now, observe that T is connected,
since the empty coloring is a counterexample that is contained by any coloring.
Furthermore, if N1 ≤ N2 ≤ N and C1 : [N1]

d → N, C2 : [m2]
d → N and

C : [N ]d → N such that C1 ⊆ C and C2 ⊆ C, then necessarily C1 ⊆ C2 and
therefore it holds that ⟨T,≺⟩ is a tree.

Now, every bad coloring CN ∈ T with domain [N ]d for N > d, when re-
stricted to [N ′]d for N ′ < N , is a counterexample as well and of course it holds
that ∀s ∈ [N ′]d, it holds that CN(s) ≤

(
max(s)

d

)
and therefore the restricted col-

oring is also in T . Therefore it holds that at any level i of ⟨T,⊆⟩, there are only
colorings with domain [i+d]d. Now, for every N ≥ d, there is a finite number of
colorings f : [N ]d → N such that for every s ∈ [N ]d, it holds that f(s) ≤

(
max(s)

d

)
in general and thus a finite number of bad colorings f ′ : [N ]d → N such that
for every s ∈ [N ]d, it holds that f ′(s) ≤

(
max(s)

d

)
. Hence, there is a finite number

of elements at any level of ⟨T,⊆⟩.
By König’s Lemma [53], there is an infinite path P = {Ci}∞i=0 in ⟨T,≺⟩.

Define a coloring C : [N]d → N by, C =
∪
i∈N

Ci. We now observe that C is a legal

coloring of d-tuples over N because of the relation ⊆ and that there exists no
H ⊆ N of size k that is canonical for C. Otherwise, if there were such H , then
C � [max(H)]d, which is in P , would not be a bad coloring and therefore would
not be in T . Obviously, there does not exist infinite H ⊆ N which is canonical
for C, contrary to the infinite canonical Ramsey theorem.

Let er(k) be the least natural number m so that for every coloring C : [m]2 →
N, there exists x ∈ [m]k such that f � X is canonical. Leffman and Rödl [58]
proved that there exist c1, c2 > 0 such that for every positive integer k, 2c1k2 ≤

er(k) ≤ 22
ck

3

2 .
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2.3.2 Paris-Harrington Ramsey Theorem

The question raised in 1931, by Gödel’s incompleteness theorem [44], re-
garding the possibility of discovering finite combinatorial theorems that are in-
dependent of powerful axiomatic systems such as first-order PA (Peano Arith-
metic), was settled in the late 1970s by J. Paris [65]. Using model-theoretic
techniques to investigate arithmetic incompleteness, he proved theorems of fi-
nite combinatorics to be unprovable in PA, basing his results on a joint work
with L. Kirby [54]. Later J. Paris and L. Harrington went on to present a proof
that a straightforward variant of the finite Ramsey theorem is independent of
Peano Arithmetic.

2.3.3 g-large Ramsey Numbers

Paris and Harrington [66] introduced the notion of a relatively large set of
natural numbers. Here, we present the main theorem of their work by consid-
ering a parameterized version of this notion. We use a requirement on the size
of the homogeneous set, relative to some (parameter) function g.

Definition 2.3.6. A nonempty H ⊆ N is g-large for a function g : N → N if
|H| ≥ g(minH). The symbol

X →∗
g (k)

d
c

means: for every coloring C : [X]d → c there is a g-large C-homogeneous H ⊆ X
such that |H| ≥ k. That is, the restriction of C to [H]d is a constant function. In case
d = 2, we just write

X →∗
g (k)c.

Fact 2.3.7. Suppose g : N → N is any function. Then for every k, c, and d there
is some N such that N →∗

g (k)
d
c .

The proof follows from the infinite Ramsey theorem and compactness. See
Paris and Harrington [66] for more details. The principle of compactness is
illustrated in the proof of Fact 2.3.9 at the end of the chapter.

Recall that the notion of a relatively large set introduced by Paris and Har-
rington is exactly g-large for g = Id. Paris and Harrington [66] proved that the
statement:

PH ≡ (∀d ≥ 1, c > 0, k > 0)(∃N) N →∗
Id (k)dc

is a Gödel sentence over Peano Arithmetic, in the sense of [44]. A different
proof of Paris and Harrington’s theorem was given by Ketonen and Solovay
[52].

The g-large Ramsey number of k and c, denoted R∗
g(k, c), is the least N so that

N →∗
g (k)c. Erdős and Mills showed in their seminal paper [33] that R∗

Id is not
primitive recursive. For a fixed number of colors the resulting Ramsey func-
tion is primitive recursive. Erdős and Mills further showed that the Ramsey
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function becomes double exponential if the number of colors is restricted to
two.

When these Ramsey functions are considered as a hierarchy indexed by the
number of colors then it is cofinal in the Grzegorczyk hierarchy of primitive
recursive functions.

2.3.4 Regressive Ramsey Theorem

In 1985, A. Kanamori and K. McAloon [49] introduced another Ramsey
type proposition and showed it to be independent of PA. Trying to avoid the
Paris-Harrington notion of relatively large finite sets and to obtain a simpler
proof for the independence of PA, they introduced a new partition relation.

2.3.5 g-regressive Ramsey Numbers

Kanamori and McAloon [49] suggested the notion of a regressive coloring.
We present their main result by considering a parameterized version of this
notion, already introduced by Kanamori and McAloon at the end of [49].

Definition 2.3.8. Given a set X ⊆ N, a coloring C : [X]d → N is g-regressive for a
function g : N → N if C(x1, . . . , xd) ≤ g(x1) for all {x1, . . . , xd} ⊆ X . The symbol

X
min→ (k)dg

means: for every g-regressive coloring C : [X]d → N there exists H ⊆ X such that
|H| ≥ k and H is min-homogeneous for C, that is, C(x, x2, . . . , xd) = C(x, y2, . . . , yd)
for all x, x2, . . . , xd, y2, . . . , yd ∈ H . In case d = 2, we just write

X
min→ (k)g.

Fact 2.3.9. Let g : N → N be arbitrary. Then

1. for every g-regressive coloring C : [N]d → N there is an infinite H ⊆ N
such that H is min-homogeneous for C;

2. for any d and k there is some N so that for every g-regressive coloring
C : [N ]d → N there is a min-homogeneous H ⊆ N of size at least k.

The first item follows from the infinite canonical Ramsey theorem, since
the only two (out of 2d) canonical colorings of d-tuples to which a g-regressive
coloring may be equivalent on an infinite set are the minimum coloring and
the constant coloring — both of which make the set min-homogeneous. The
second item follows from the first via compactness. At the end of this section
we give more detailed proofs for both items.
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Recall that the notion of regressiveness is exactly g-regressiveness for g =
Id. Kanamori and McAloon [49] proved that the following statement,

KM ≡ (∀d ≥ 1, k > 0)(∃N) N
min→ (k)dId

is a Gödel sentence in Peano Arithmetic.
The g-regressive Ramsey number of k, denoted Rreg

g (k), is the least N so that
N

min→ (k)g. Kanamori and McAloon [49] also proved, using model-theoretic
techniques, that Rreg

Id is not primitive recursive. Purely combinatorial proofs of
this can be found in [69] and in [56].

Note that there may be functions g, such that for any g-regressive coloring
C : [X]2 → N there exists C-homogeneous H ⊆ X of cardinality k (e.g., for
constant functions g = c, the resulting requirement is a weaker one than the
requirement of the standard Ramsey theorem). Therefore, it makes sense to
add the following this notation. We let the symbol

X → (k)g

mean: for every g-regressive coloring C : [X]2 → N there exists H ⊆ X such
that |H| ≥ k and H is C-homogeneous.

Proof of Fact 2.3.9. We now present detailed proofs for the generalizations
(via parameterization) of both the infinite and finite regressive Ramsey theo-
rems. We find these proofs of some interest, since the proof of the infinite case
makes use of the infinite canonical Ramsey theorem, while the proof of the fi-
nite case uses the compactness principle, which is a tool we do not possess in
PA.

Proof of Fact 2.3.9– 1. The case where d = 1 is trivial as N is min-homogeneous
for any coloring C : N → N. Assume d > 1. Let C : [N]d → N be regressive
and let H be an infinite canonical set for C with I = I(H). We claim that either
I = ∅ or I = {0}. Suppose to the contrary that I contains i ̸= 0. Let h be the
minimal element in H . There are arbitrarily many d-tuples from H with h as
first element and that disagree on i and hence are mapped by C to different
values. Thus, there must be a d-tuple containing h that is mapped to m > g(h),
contrary to g-regressiveness of f . Now, if I = ∅, then H is homogeneous for C
and if I = {0}, then H is min-homogeneous for C.

It is worth noting that the finitistic version of the canonical Ramsey theorem
does not induce the finite regressive theorem in the same way that the infinite
version of the canonical Ramsey theorem gives the infinite version of the re-
gressive Ramsey theorem in the proof above. A proof, following the track of
the infinite version, would fail trying to assert that I(H) for the finite canonical
set H necessarily does not contain i ̸= 0 as g(min(H)) can be sufficiently large
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to allow all d-tuples containing min(H) be assigned a different color. Indeed,
there are different bounds for canonical and regressive Ramsey numbers. Al-
ready in the case of pair colorings, canonical Ramsey numbers are exponential
while regressive Ramsey numbers are Ackermannian. We will prove the finite
version by means of compactness.

Proof of Fact 2.3.9– 2. Assume to the contrary that there exist g : N → N and
k, d ∈ N such that for any N ∈ N there is a counterexample CN : [N ]d → N
which is “bad” in the sense that CN is g-regressive, but there exists no H ∈ [N ]k

min-homogeneous for CN . Let T be the set of all bad colorings, that is, T is the
set of all colorings C : [N ]d → N for some N ∈ N such that C is g-regressive
and there is no H ∈ [N ]k that is min-homogeneous for C.

Define a binary relation ≺ on colorings, by C1 ≺ C2 iff C1 ⊆ C2 and there
is no C3 such that C1 ⊆ C3 ⊆ C2. We claim that ⟨T,≺⟩ is an infinite tree
with a finite number of nodes at any level i. First, it is clear that T is infinite, as
there exist infinitely many counterexamples. Now, observe that T is connected,
since the empty coloring is a counterexample that is contained by any coloring.
Furthermore, if N1 ≤ N2 ≤ N and C1 : [N1]

d → N, C2 : [N2]
d → N and

C : [N ]d → N such that C1 ⊆ C and C2 ⊆ C, then necessarily C1 ⊆ C2 and
therefore it holds that ⟨T,≺⟩ is a tree.

Now, every bad coloring CN with domain [N ]d for N > d, when restricted
to [N ′]d for N ′ < N , is a counterexample as well and therefore is also in T ;
therefore, it holds that at any level i of ⟨T,≺⟩, there are only colorings with
domain [i + d]d. For every N ≥ d, there is a finite number of g-regressive
colorings of [N ]d and thus a finite number of bad colorings of [N ]d . Hence,
there is a finite number of elements at any level of ⟨T,≺⟩.

By König’s Lemma [53], there is an infinite path P = {Ci}∞i=0 in ⟨T,≺⟩.
Define a coloring C : [N]d → N by, C =

∪
i∈N

Ci. Observe that C is indeed a

g-regressive coloring of d-tuples over N because of the relation ⊆ and observe
that there exists no H ⊆ N of size k that is min-homogeneous for C. Other-
wise, if there were such H , then C � [max(H)]d, which is in P , would not be
a bad coloring and therefore would not be in T in the first place. Obviously,
there exists no infinite H ⊆ N which is min-homogeneous for C, contrary to
Fact 2.3.9–1.



Chapter 3

Phase Transition Threshold of
g-regressive Ramsey Numbers

In this chapter we show that the threshold for Ackermannian g-regressive
Ramsey numbers lies above all functions n1/f−1(n) obtained from a primitive
recursive f and below n1/Ack−1(n).

Worded differently, for a nondecreasing and unbounded g to have primi-
tive recursive g-regressive Ramsey numbers it is necessary and sufficient that
g is eventually dominated by n1/t for all t > 0 and that the rate at which g gets
below n1/t is not too slow: if g gets below n1/t only after an Ackermannianly
long time Mt, then the g-regressive Ramsey numbers are still Ackermannian.

We also identify the threshold below which g-regressive colorings have
usual Ramsey numbers, that is, admit homogeneous, rather than just min-
homogeneous sets, and give a lower bound of A53(2

2274) on the Id-regressive
Ramsey number of k = 82, where A53 is the 53-rd approximation of Acker-
mann’s function.

We begin by recalling the following notations and definitions from Chap-
ter 2. Given a set X ⊆ N, a coloring C : [X]d → N is g-regressive for a function
g : N → N if C(x1, . . . , xd) ≤ g(x1) for all {x1, . . . , xd} ⊆ X . The symbol

X
min→ (k)g

means: for every g-regressive coloring C : [X]2 → N there exists H ⊆ X
such that |H| ≥ k and H is min-homogeneous for C. The g-regressive Ramsey
number of k, denoted Rreg

g (k), is the least N so that N min→ (k)g.
Kanamori and McAloon introduced the notion of a g-regressive coloring

in [49] and proved that the g-regressive Ramsey number for g = Id is Acker-
mannian. On the other hand, it follows from the proof of the standard Ramsey
theorem that Rreg

g is primitive recursive for every constant function g.
We next compute the sharp thresholds on g at which g-regressive Ramsey

numbers cease to be primitive recursive and become Ackermannian. The re-
sults in this chapter are taken almost verbatim from [55].
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3.1 g-regressive Lower Threshold

We begin with the following lemma which stems from Lemma 26.4 in [32].

Lemma 3.1.1. Rmin(k, c) ≤ 2 · ck−2 for any c, k ≥ 2.

Note that Lemma 26.4 in [32] talks about end-homogeneous sets. However,
if we confine ourselves to the 2-dimensional case then it is just about min-
homogeneous sets. Concerning n-dimensional min-homogeneous sets see [57].

Theorem 3.1.2. Given B : N → N+ let gB(i) =
⌊
i1/B

−1(i)
⌋

. Assume B is non-
decreasing and unbounded. Then for every k ≥ 2 such that B(k2) ≥ 2 it holds that
(B(k2))k+1 min→ (k)gB .

Proof. Given k ≥ 2 such that B(k2) ≥ 2 set

N = (B(k2))k+1 and ℓ = 2 · (B(k2))k ≤ N .

Now let C : [N ]2 → N be a gB-regressive function. Consider the function
D : [B(k2), ℓ]2 → N defined from C by restriction. For any y ∈ [B(k2), ℓ] we
have

y
1

B−1(y) ≤ (B(k2))
k+1

B−1(B(k2)) = (B(k2))(k+1)·k−2

which implies that Im(D)⊆(B(k2))(k+1)·k−2
+ 1. On the other hand,

2 · ((B(k2))(k+1)·k−2

+ 1)k−2 < ((B(k2))(k+1)·k−2+1)k−1 < (B(k2))k.

By Lemma 3.1.1 there is some k-element set H which is min-homogeneous for
D, and hence for C.

Corollary 3.1.3. Suppose B : N → N+ is unbounded, nondecreasing and g(n) ≤
gB(n) =

⌊
n1/B−1(n)

⌋
for all n . If B is bounded by a primitive recursive function,

then Rreg
g is bounded by a primitive recursive function. If, in addition, g itself is

primitive recursive, then Rreg
g is primitive recursive.

Proof. By the theorem above Rreg
g is eventually dominated by (B(k2))k+1 and

thus is bounded by a primitive recursive function. If, in addition, g is primitive
recursive, then the relation N

min→ (k)g is a primitive recursive relation and
the computation of Rreg

g requires only a bounded search for a solution for a
primitive recursive relation and therefore Rreg

g is primitive recursive.
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3.2 g-regressive Upper Threshold

We provide now two different proofs for the upper threshold, by display-
ing two different “bad” colorings, each based on a different combinatorial
proof of the fact the Id-regressive Ramsey numbers are Ackermannian [69, 56].
The first proof makes use of the idea from [69], and the second proof uses the
idea of [56]. Both colorings are based on the idea of expanding the difference
between two natural numbers by a “moving” base, depending on the position
of the pair.

The first bad coloring we give codes “half” of the information that the sec-
ond coloring codes: the color of {m,n} according to the first coloring is the first
different digit in the expansions of m and n, whereas according to the second
it is the pair consisting of that digit and its position. The missing information
in the first coloring is compensated by composing the regressive Ramsey func-
tion with the usual Ramsey function. The first proof is essentially asymptotic.

In the second proof we construct a single, simply computable n1/Ack−1(n)-
regressive, primitive recursive coloring of [N]2. It requires more detailed anal-
ysis of variants of approximations of Ackermann’s function, but in return the
result is less asymptotic and enables estimates of Rreg

Id (k) for relatively small
values of k. For instance, we show that Rreg

Id (82) is larger than A53(2
2274).

3.2.1 g-regressive Upper Threshold – First Proof

We now begin working towards the first proof of the converse of Corol-
lary 3.1.3: if f−1 is Ackermannian and g(n) = n1/f(n) then Rreg

g is Ackerman-
nian. This proof generalizes the method developed in [69] and [56].

Definition 3.2.1. For a given t ∈ N \ {0}, we define a sequence of functions (ft)i :
N → N as follows.

(ft)1(n) = n+ 1

(ft)i+1(n) = (ft)
(⌊n1/t⌋)
i (n)

Note that (ft)i are strictly increasing. We also remark that (f1)i = Ai and
thus (f1)k(k) = Ack. We would first like to show that the function k 7→ (ft)k(k)
is Ackermannian for all t > 0. To do that, we show that although, for large t,
the hierarchy (ft)i grows more slowly than the Ackermann hierarchy (f1)i (be-
cause functions are iterated only n1/t times instead of n times), one can com-
pensate for this slowness by increasing the subscript i. The following compu-
tations show how much of an increase of i suffices for this purpose.

Claim 3.2.2. For every t, k, n > 0 it holds that (ft)k(n) ≥ n+ (⌊n1/t⌋)k−1 .
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Proof. We show the claim by induction on k. If k = 1, it follows by definition
that (ft)k(n) = n + 1 = n + (⌊n1/t⌋)k−1. Let k ≥ 1. By definition (ft)k+1(n) =

(ft)
(⌊n1/t⌋)
k (n) and by applying the induction hypothesis ⌊n1/t⌋ times we get that

the right hand side of the equation is larger than n+((⌊n1/t⌋)(⌊n1/t⌋)k−1) which
is n+ (⌊n1/t⌋)k.

Claim 3.2.3. For every t, k > 0 and n > 2t+1 it holds that (ft+1)2t+3(n
2) > n2 +

2n+ 1.

Proof. By Claim 3.2.2 we have that (ft+1)2t+3(n
2) ≥ n2 + (⌊n

2
t+1 ⌋)2t+2. Now

n2 + (⌊n
2

t+1 ⌋)2t+2 ≥ n2 + (n
2

t+1 − 1)2(t+1)

≥ n2 + (n
4

t+1 − 2n
2

t+1 + 1)t+1

> n2 + (n
2

t+1 (n
2

t+1 − 2))t+1

> 2n2

> n2 + 2n+ 1

for any t, k > 0 and n > 2t+1.

Claim 3.2.4. Let t > 0. For all n > 2t+1, i > 0 it holds that

(ft+1)i+2t+2(n
2) > ((ft)i(n))

2 .

Proof. We prove the claim simultaneously for all n, by induction on i. For i = 1,
by Claim 3.2.3,

(ft+1)i+2t+2(n
2) = (ft+1)2t+3(n

2) > n2 + 2n+ 1 = ((ft)1(n))
2 = ((ft)i(n))

2 .

We now assume that Claim 3.2.4 is true for i (for all n > 2t+1) and prove it for
i+ 1. To do that we need the following claim:

Claim 3.2.5. For any j ∈ N+ it holds that (ft+1)
(j)
i+2t+2(n

2) > ((ft)
(j)
i (n))2 .

Proof. We show Claim 3.2.5 by induction on j. For j = 1 the claim is exactly
the induction hypothesis for i. For j > 1 we have

(ft+1)
(j+1)
i+2t+2(n

2) = (ft+1)i+2t+2((ft+1)
(j)
i+2t+2(n

2)).

The latter term is larger than (ft+1)i+2t+2(((ft)
(j)
i (n))2) by monotonicity and the

induction hypothesis for j. Now, if we denote n′ = (ft)
(j)
i (n), we easily see, by

the induction hypothesis for i, that (ft+1)i+2t+2((n
′)2) > ((ft)i(n

′))2 which is, in
fact, ((ft)

(j+1)
i (n))2.
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We still need to show the induction step for Claim 3.2.4. We have

(ft+1)i+1+2t+2(n
2) = (ft+1)

(⌊n
2

t+1 ⌋)
i+2t+2 (n2) ≥ (ft+1)

(⌊n1/t⌋)
i+2t+2 (n

2) .

By Claim 3.2.5, the latter term is larger than ((ft)
(⌊n1/t⌋)
i (n))2 = ((ft)i+1(n))

2.

Claim 3.2.6. For all t > 0, n > 4 it holds that (ft+1)i+t2+3t(n
2t) > (Ai(n))

2t .

Proof. Observe that (Ai(n))
2t is actually ((f1)i(n))

2t . By applying Claim 3.2.4
to the latter term, we get ((f1)i(n))2

t
< ((f2)i+2+2(n

2))2
t−1 , since the parameter

t of Claim 3.2.4 is 1 here. If we apply it now to the right hand side term, the
parameter t of the claim would be 2 and we would find that this term is smaller
than ((f3)i+2+2+4+2(n

2))2
t−1 . Generally, if we apply the claim j times we get that

((f1)i(n))
2t < ((fj+1)i+j2+3j(n

2j))2
t−j since we may replace

∑j
l=1 2j with j2 + j.

Thus, if we let j = t, we get the desired inequality. Note that we are allowed
to apply Claim 3.2.4 t times, only if, for all 1 ≤ j ≤ t it holds that n2j−1

> 2j+1,
which holds for every n > 4.

Claim 3.2.7. For every t > 0 and n > 3t it holds that (ft)4t+1(n) > n2.

Proof. Applying Claim 3.2.2 with k = 4t+1 we have (ft)4t+1(n) ≥ n+(⌊n1/t⌋)4t
and the latter term is larger than ((n1/t − 1)2)2t which equals ((n2/t − 2n1/t +
1))2t > (n1/t(n1/t− 2))2t. Now, since n > 3t we know that n1/t− 2 > 1 and thus,
the latter term is larger than (n1/t)2t = n2.

Claim 3.2.8. For every t > 0 and n > max{3t, tt} it holds that (ft)4t+2(n) > n2t .

Proof. By definition (ft)4t+2(n) = (ft)
(⌊n1/t⌋)
4t+1 (n) which is not less than (ft)

(t)
4t+1(n)

since n > tt. Now, applying Claim 3.2.7 t times, we get (ft)
(t)
4t+1(n) > n2t since

ft is monotone.

Claim 3.2.9. For any t > 0 and n > max{4, 3t+1, (t+ 1)t+1} it holds for any i > 0
that (ft+1)i+t2+4t+5(n) > Ai(n).

Proof. Since n > 2t+1, we have that

(ft+1)i+t2+4t+5(n) = (ft+1)
(⌊n1/(t+1)⌋)
i+t2+4t+4 (n) > (ft+1)

(2)

i+t2+4t+4(n).

The latter term is clearly larger than (ft+1)i+t2+3t((ft+1)4t+6(n)) since i, t > 0. By
Claim 3.2.8 we have (ft+1)4t+6(n) > n2t+1 and thus, by Claim 3.2.6 we get

(ft+1)i+t2+3t((ft+1)4t+6(n)) > (ft+1)i+t2+3t(n
2t) > (Ai(n))

2t

which is clearly larger than Ai(n).



30 Phase Transition Threshold of g-regressive Ramsey Numbers

We are now ready to establish that the growth rate of k 7→ (ft)k(k) is Acker-
mannian in terms of k. We have already shown that every primitive recursive
function is eventually dominated by (ft)i for some i. We now use this and the
fact that (ft)i are increasing to establish that the growth rate of k 7→ (ft)k(k) is
similar to that of the Ackermann function.

Claim 3.2.10. For all 0 < t ∈ N the function k 7→ (ft)k(k) is Ackermannian.

Proof. For t = 1 the functions (ft)k = Ak, the standard k-th approximations
of Ackermann’s functions, so every primitive recursive function is eventually
dominated by (ft)k(k) (see e.g. [17]).

For t > 1 It suffices to show that for every i ∈ N, the function (ft)k(k)
eventually dominates Ai(k). Namely, that there exists mi ∈ N such that for
every m > mi it holds that (ft)m(m) > Ai(m). But, by Claim 3.2.9, if we set
mi = max({(t+ 1)t+1, i+ t2 + 4t+ 5}), we get exactly that since for any m > mi

it holds that (ft)m(m) > (ft+1)i+t2+4t+5(m) > Ai(m).

We now turn to the converse of Corollary 3.1.3.

Definition 3.2.11. Given t ∈ N+ set,

gt(n)
∆
=
⌊
n1/t

⌋
.

Lemma 3.2.12. Rreg
gt (R(n+ 3, c)) ≥ (ft)c+1(n) for any c and n.

Proof. Let k = R(n+ 3, c) and define a function Ct : [R
reg
gt (k)]

2 → N as follows:

Ct(x, y) =

{
0 if (ft)c+1(x) ≤ y,
ℓ otherwise,

where the number ℓ is defined by

(ft)
(ℓ)
p (x) ≤ y < (ft)

(ℓ+1)
p (x)

where 0 < p = max{q : (ft)q(x) ≤ y} < c + 1. Note that Ct is gt-regressive

since (ft)
(⌊ x1/t⌋)
p (x) = (ft)p+1(x). Let H be a k-element subset of Rreg

gt (k) which
is min-homogeneous for Ct. Define a c-coloring Dt : [H]2 → c by

Dt(x, y) =

{
0 if (ft)c+1(x) ≤ y,
p− 1 otherwise,

where p is as above. Then there is an (n+ 3)-element set Y ⊆H homogeneous
for Dt. Let x < y < z be the last three elements of Y . Then n ≤ x and thus it
suffices to show that (ft)c+1(x) ≤ y since (ft)c+1 is an increasing function.
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Assume (ft)c+1(x) > y. Then (ft)c+1(y) ≥ (ft)c+1(x) > z by the min-
homogeneity. Let Ct(x, y) = Ct(x, z) = ℓ and Dt(x, y) = Dt(x, z) = Dt(y, z) =
p− 1. Then

(ft)
(ℓ)
p (x) ≤ y < z < (ft)

(ℓ+1)
p (x).

This implies that z < (ft)
(ℓ+1)
p (x) ≤ (ft)p(y) ≤ z. Contradiction.

Corollary 3.2.13. Rreg
gt is Ackermannian for any t ∈ N+.

Proof. It is obvious by Claim 3.2.10 since Rreg
gt is nondecreasing.

Theorem 3.2.14. Suppose f : N → N is nonzero, nondecreasing and unbounded,
and f(i) ≤ Ack(i) for all i. Let g(i) =

⌊
i1/f

−1(i)
⌋

. It holds for all i that

Rreg
g (R(4 + 3i+1 + (i+ 1)i+1 + 3, i+ i2 + 4i+ 5)) > f(i+ 1) .

Proof. Let p(i) = 4 + 3i+1 + (i + 1)i+1 and q(i) = i + i2 + 4i + 5. Assume to the
contrary that for some i

N(i) = Rreg
g (R(p(i) + 3, q(i))) ≤ f(i+ 1) .

For all ℓ ≤ N(i) we have f−1(ℓ) ≤ i+ 1, and hence ℓ1/(i+1) ≤ ℓ1/(f
−1(ℓ)). Then

Rreg
g (R(p(i) + 3, q(i))) ≥ Rreg

gi+1
(R(p(i) + 3, q(i)))

≥ (fi+1)q(i)+1(p(i))

> Ai+1(p(i))

≥ Ack(i+ 1)

≥ f(i+ 1)

by Lemma 3.2.12 and Claim 3.2.9. Contradiction!

Theorem 3.2.15. Suppose B : N → N is positive, unbounded and nondecreasing.
Let gB(i) =

⌊
i1/B

−1(i)
⌋

. Then Rreg
gB

(k) is Ackermannian iff B is Ackermannian.

Proof. Suppose B is Ackermannian. By replacing B with min{B,Ack}, we may
assume that B(i) ≤ Ack(i) for all i ∈ N. That Rreg

gB
is Ackermannian follows

from the previous theorem, since r(i) = R(4+3i+1+(i+1)i+1+3, i+ i2+4i+5)
is primitive recursive.

Suppose now that B is not Ackermannian, and fix an increasing primitive
recursive function f so that for infinitely many i ∈ N it holds that B(i) < f(i).
On the other hand, it holds by Theorem 3.1.2 that Rreg

gB
(k) ≤ (B(k2))k+1 for any

k ≥ 2 such that B(k2) ≥ 2. Hence it holds that Rreg
gB

(i) ≤ (f(i2))i+1 for infinitely
many i ∈ N. This means that, for infinitely many i ∈ N, Rreg

gB
(i) is bounded by

f ′(i) for some primitive recursive f ′ : N → N.
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3.2.2 g-regressive Upper Threshold – Second Proof

We now begin the second proof by presenting a general method for con-
structing a “bad” g-regressive coloring which is a generalization of the method
from [56]. In other words, given a function g and a natural number k, we
present a g-regressive coloring Cg of pairs over a segment of size depending
on g and k such that there is no min-homogeneous set for Cg of size k+1 within
that segment. We then further show that if g(n) = n1/r for r > 0, then the size
of the segment we may color is Ackermannian in terms of k. We then use
this general coloring method to construct a single n1/Ack−1(n)-regressive “bad”
coloring of [N]2.

Let g : N → N a nondecreasing function such that for every k ∈ N there

exists some t ∈ N such that k ≤
√

g(t)

2
. Let µg : N → N be a function which

satisfies for all k ∈ N that k ≤
√

g(µg(k))

2
.

Definition 3.2.16. We define a sequence of functions (fg)i : N → N as follows.

(fg)1(n) = n+ 1

(fg)i+1(n) = (fg)
(⌊

√
g(n)

2
⌋)

i (n)

Given k > 2, we define a sequence of semi-metrics ⟨(dg)i : i ∈ N⟩ on {n :
n ≥ µg(k)} by setting, for m,n ≥ µg(k),

(dg)i(m,n) = |{ℓ ∈ N : m < (fg)
(ℓ)
i (µg(k)) ≤ n}|

For n > m ≥ µg(k) let Ig(m,n) be the greatest i for which (dg)i(m,n) is positive,
and Dg(m,n) = (dg)I(m,n)(m,n).

Let us fix the following (standard) pairing function Pr on N2:

Pr(m,n) =

(
m+ n+ 1

2

)
+ n

Pr : N2 → N is bijective and monotone in each variable. Observe that if m,n ≤
ℓ then Pr(m,n) < 4ℓ2 for all ℓ > 2.

Definition 3.2.17. Given a natural number k > 2 and an unbounded nondecreasing
function g : N → N, we define a pair coloring Cg on [{n : n ≥ µg(k)}]2 as follows:

Cg(m,n) = Pr(Ig(m,n), Dg(m,n))

Claim 3.2.18. Dg(m,n) ≤
√

g(m)

2
for all n > m ≥ µg(k) .



3.2 g-regressive Upper Threshold 33

Proof. Let i = Ig(m,n). Since (dg)i+1(m,n) = 0, there exist t and ℓ such that

t = (fg)
(ℓ)
i+1(µg(k)) ≤ m < n < (fg)

(ℓ+1)
i+1 (µg(k)) = (fg)i+1(t).

But (fg)i+1(t) = (fg)
(⌊

√
g(t)

2
⌋)

i (t) and thus
√

g(t)

2
≥ (dg)i(t, (fg)i+1(t)) ≥ Dg(m,n).

Claim 3.2.19. Cg is g-regressive on the interval [µg(k), (fg)k(µg(k))).

Proof. Clearly, (dg)k(m,n) = 0 for µg(k) ≤ m < n < (fg)k(µg(k)) and therefore

Ig(m,n) < k ≤
√

g(m)

2
. From Claim 3.2.18 we know Dg(m,n) ≤

√
g(m)

2
. Thus,

Cg({m,n}) ≤ Pr(⌊
√

g(m)

2
⌋, ⌊

√
g(m)

2
⌋), which is < g(m) since

√
g(m)

2
> 2.

Claim 3.2.20. For every i ∈ N, every sequence x0 < x1 < · · · < xi that satisfies
(dg)i(x0, xi) = 0 is not min-homogeneous for Cg.

Proof. The claim is proved by induction on i. If i = 1 then there are no x0 <
x1 with (dg)1(x0, x1) = 0 at all. Let i > 1 and suppose to the contrary that
x0 < x1 < · · · < xi form a min-homogeneous sequence with respect to Cg and
that (dg)i(x0, xi) = 0. Necessarily, Ig(x0, xi) = j < i. By min-homogeneity,
I(x0, x1) = j as well, and (dg)j(x0, xi) = (dg)j(x0, x1). Hence, {x1, x2, . . . xi} is
min-homogeneous with (dg)j(x1, xi) = 0, contrary to the induction hypothesis.

Corollary 3.2.21. There exists no H ⊆ [µg(k), (fg)k(µg(k))) of size k + 1 that is
min-homogeneous for Cg.

Corollary 3.2.22. Assume that the function k 7→ (fg)k(k) is Ackermannian. If there
exists a function µg that is bounded by some primitive recursive function and satisfies

for all k that k ≤ µg(k) and that k ≤
√

g(µg(k))

2
, then Rreg

g is also Ackermannian.

Proof. First consider the function C ′
g : [(fg)k(µg(k))]

2 → N defined by

C ′
g(m,n) =

{
0 if m < µg(k),

Cg(m,n) otherwise.

Note that C ′
g is g-regressive and has, by Corollary 3.2.21, no min-homogeneous

set of size µg(k) + k + 1. Hence, we have Rreg
g (µg(k) + k + 1) > (fg)k(µg(k)).

On the other hand, the function k 7→ (fg)k(µg(k)) is obviously Ackerman-
nian. Therefore, Rreg

g is also Ackermannian because µg(k) is bounded by some
primitive recursive function (See the proof of Lemma 2.2.3).

Lemma 3.2.23. Given a real number r > 0 let g(n) =
⌊
n1/r

⌋
. Then the function

Rreg
g is Ackermannian.
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Proof. Given a real number r > 0 let t = ⌈r⌉. We first observe that the function
k 7→ k1/2t

2
grows eventually faster than the function k 7→ k1/4t and therefore,

by Claim 3.2.10, k 7→ (fgt)k(k) is Ackermannian. Set µgt(k) = 4tk2t. By Corol-
lary 3.2.22, Rreg

gt is Ackermannian. Therefore Rreg
g is Ackermannian too.

We conclude with a single primitive recursive procedure for coloring all of
[N]2 whose Ramsey function is Ackermannian.

Theorem 3.2.24. Suppose g(n) =
⌊
n1/Ack−1(n)

⌋
for n > 0 and g(0) = 0. There

exists a g-regressive, primitive recursive coloring C : [N]2 → N such that for every
primitive recursive function f : N → N there exists Nf ∈ N such that for all m > Nf

and H ⊆ m which is min-homogeneous for C it holds that f(|H|) < m.

Proof. We define a g-regressive coloring C by dividing N+ into disjoint inter-
vals of the form (µt−1, µt], defining a g-regressive coloring Ct for all pairs over
each such interval. For each t, we specify an upper bound kt on the sizes of
Ct-min-homogeneous subsets of (µt−1, µt]. For the first interval we fix an ad-
hoc coloring and for all other intervals we use the definition of Cg as described
above. Finally, we integrate all colorings to a single coloring of all pairs over N,
by simply setting C(m,n) = 0 for m,n from different intervals and C(0, n) = 0
for all n ∈ N+. For notational convenience we start with µ2 = 0. We set µ3 = 261

and µt = Ack(t) for t ≥ 4.
On (µ2 = 0, µ3] fix C3 as follows. Since g(n) ≥ 1 for all n > 0 we may

color pairs from (0, 261] g-regressively by 2 colors. Using a simple probabilistic
argument it may be shown that for any k ≥ 4, there exists a 2-coloring of[
2k/2

]2 with no min-homogeneous set of size k. We set k3 = 122 and let C3 be a
restriction of such a coloring to (0, 261].

Now we need to define Ct for all t > 3. Let k4 = 98 and kt = 16t2 + 9t +
2 for all t > 4. We color pairs over the interval [µt−1, (fgt)kt(µt−1)) by Cg as
defined above (Definition 3.2.17), using as parameters, g = gt, as defined in
Definition 3.2.11, and k = kt. For formality, we fix the function µgt(k) = µt−1

iff t is the least number such that 3 < t and k ≤ kt. For our needs, however,

it suffices to observe that for all t > 3 it holds that kt ≤
√

gt(µgt (kt))

2
, which can

easily be verified. We set Ct, for t > 3, to be the restriction of Cgt to (µt−1, µt]
(See Claim 3.2.25 to observe that it is a restriction).

The following claim shows that the union of all intervals, indeed covers all
N.

Claim 3.2.25. Ack(t) < (fgt)kt(µt−1) for all t > 3.

Proof. We first prove Claim 3.2.25 for t = 4. Note that k4 = 98. Observe that
61
8
−1 > 61

10
and hence for all n ≥ 261 and for every i ∈ N it holds that (fg4)i(n) ≥

(f10)i(n). By Claim 3.2.2 we know that (f10)97(2
61) > (⌊(261)1/10⌋)96 > 2576.
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Using the same argument again we also know that (f10)97(2576) > 25472. Thus,
(fg4)k4(µ3) = (fg4)98(2

61) is much larger than

(fg4)
(3)
97 (2

61) > (fg4)97((f10)
(2)
97 (2

61)) > (fg4)97(2
5472)

Now, since 5472
8

− 1 > 5472
9

it holds for all m ≥ 25472 and for every i ∈ N
that (fg4)i(m) ≥ (f9)i(m). Hence we have (fg4)97(2

5472) ≥ (f9)97(2
5472) and by

Claim 3.2.6, we have that (f9)97(25472) > (f9)9+82+24(5
28) > (A9(5))

28 and thus,
obviously larger than A4(4). Now, let t > 4. Observe that µt−1 > A4(t − 1)
and therefore larger than 24t. Since for all n ≥ 24t and for every i ∈ N it holds
that (fgt)i(n) ≥ (f4t)i(n), we have that (fgt)kt(µt−1) ≥ (f4t)kt(µt−1). It also holds
that µt−1 > (4t)4t. Hence, by Claim 3.2.9 (f4t)kt(µt−1) > Akt−16t2−8t−2(µt−1) =
At(Ack(t− 1)) which is obviously larger than At(t).

Finally, we define C as follows.

C(m,n) =

{
Ct(m,n) if 0 < m,n ∈ (µt−1, µt],

0 otherwise.

Claim 3.2.26. The coloring C is g-regressive.

Proof. Let m,n ∈ N be such that m < n. If C(m,n) = 0 then we have C(m,n) ≤
g(m). Otherwise, m and n are in the same interval. If m,n ∈ (µ2, µ3] then
C(m,n) ≤ 1 ≤

⌊
m1/Ack−1(m)

⌋
by definition of C3. If m,n ∈ (µt−1, µt] for some

t > 3, then we have Ack−1(m) = t. We also know Ct is gt regressive on that
interval and thus C(m,n) = Ct(m,n) ≤

⌊
m1/t

⌋
=
⌊
m1/Ack−1(m)

⌋
.

Claim 3.2.27. The coloring C is primitive recursive.

Proof. It is primitive recursive to compute for an input n the last value of Ack
below n. Thus, given input m,n one can determine whether there is some t ≥ 3
so that m,n ∈ (µt−1, µt]. The computation of C on each (µt−1, µt] is uniform and
primitive recursive. So altogether, C is primitive recursive.

Claim 3.2.28. For any given N ∈ N with Ack−1(N) < j for some j > 3, there is no
C-min-homogeneous H ⊆ [N ] of size (kj)2 + 123.

Proof. Clearly, for all t > 3 it holds that kt < kt+1 and that kt > t. Thus, since at
any interval (µt−1, µt] for 3 < t ≤ j, the largest min-homogeneous subset may
be of size kt and hence, no more than kj . Therefore, in the union of all those
intervals there is no min-homogeneous subset larger than kj(j − 3) < (kj)

2.
Now, in the first interval there can be no min-homogeneous of size 122. Thus,
as we allow 0 to be an element of any min-homogeneous subset, so there is
no min-homogeneous H ⊆ [N ] of size (kj)

2 + 123 in the union of all intervals
before Ack(j), of which [N ] is a subset.
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To conclude the proof of Theorem 3.2.24, fix f1(i) = i2 + 123 and f2(i) =
16i2 + 9i + 2. Now, given some primitive recursive function f , let f ′ be some
increasing primitive recursive function which bounds f . Note that the compo-
sition h = f ′ ◦ (f1 ◦f2) is also primitive recursive. Let t0 > 4 be the least natural
number such that for all t ≥ t0 it holds that Ack(t−1) > h(t). Let Nf = Ack(t0).
Given m > Nf such that m ∈ (µt−1, µt] and H ⊆ m which is min-homogeneous
for C, by Claim 3.2.28 we know that |H| < k2

t + 123 = f1(f2(t)). By mono-
tonicity of f ′, we have f ′(|H|) < f ′(f1(f2(t)))) = h(t). Since Nf < m and by
monotonicity of Ack, we have t ≥ t0 and thus h(t) < Ack(t − 1) < m. Now,
f(i) ≤ f ′(i) for all i ∈ N and therefore f(|H|) ≤ f ′(|H|) < m

This completes the proof of Theorem 3.2.24.

3.2.3 The Id-regressive Ramsey Number of 82 is Larger than
A53(2

2274)

We provide now a (huge) lower estimate on an Id-regressive Ramsey num-
ber for a reasonably small k = 82. The point to stress is that the bad colorings
we had above work not only asymptotically but may be used to estimate small
values. For more on small regressive Ramsey numbers see Blanchard [8].

Claim 3.2.29. For g = Id it holds that Rreg
g (82) > A53(2

2274).

Proof. Let µ = 214 and k = 64. By Claims 3.2.19 and 3.2.20 we know that
there is a g-regressive coloring CId on the interval [µ, (fId)k(µ)) which yields no
H ⊆ [µ, (fId)k(µ)) of size k + 1 which is min-homogeneous for CId. Let us now
examine the magnitude of (fId)k(µ). By definition

(fId)k(µ) = (fg1)64(2
14) = (fg1)

(64)
63 (214).

Since for all x > 26 it holds that x1/2

2
> x1/3 and by monotonicity, we may

look at (f3)
(64)
63 (214) which, by Claim 3.2.2, is larger than (f3)

(63)
63 ((⌊214/3⌋)62) >

(f3)
(63)
63 (2285). By applying the same argument again we get (f3)

(63)
63 (2285) >

(f3)
(62)
63 (25889). We go on applying Claim 3.2.2 in the straightforward manner

until we establish that the latter term is larger than (f3)
(59)
63 (251981110) and then

we start using 60 instead of 62 at the exponent which enables us to lose the
rounding operation. Thus, we know (f3)

(59)
63 (251981110) > (f3)

(1)
63 (2

51981110∗2058) >
(f3)63(2

2276). By applying Claim 3.2.6 to the latter term we get (f3)63(22
276
) =

(f3)53+22+6((2
2274)2

2
) > (A53(2

2274))2
2 which is obviously larger than A53(2

2274).
On [0, 13) there is an Id-regressive coloring with no min-homogeneous set

with more than 4 elements (see [8]). On [13, 214) let C(m,n) be the largest po-
sition of a different digit in the base 2 expansions of m and n. This color-
ing is Id-regressive, since C(m,n) ≤ 13 for all such m,n and admits no min-
homogeneous set of size 14. Coloring m,n from different intervals by 0 pro-
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duces then a coloring on the interval [0, A53(2
2274)) with no min-homogeneous

set of size larger than 4 + 13 + 64 = 81.

3.3 Phase Transition From Homogeneous Ramsey
Numbers to Min-Homogeneous Ramsey Num-
bers

We now look at the threshold g at which one can guarantee the usual Ram-
sey theorem for g-regressive colorings, that is, have homogeneous rather than
just min-homogeneous sets.

Theorem 3.3.1. Suppose f : N → N+ is nondecreasing and unbounded, and let
g(x) =

⌊
log(x)

f(x) log(log(x))

⌋
for x ≥ 4 and g(x) = 0 for x < 4. Then for all k there exists

some N so that N → (k)g.

Proof. Given k ≥ 4, find N1 such that f(N1) > k. Observe that for all N1 ≤
m1 ≤ m2, it holds that g(m1) ≤

⌊
log(m2)

k log(log(m2))

⌋
. This is because the function z

log z

is not decreasing for z ≥ 2. Let N = max{2N1, 2
2k}. Clearly,

⌊
log(N)

k log(log(N))

⌋
≥

1. We claim that any g-regressive function defined on [N ]2 admits a k sized
homogeneous set.

Let C : [N ]2 → N be g-regressive and C ′ : [N1, N ]2 → c be its restriction,
where c =

⌊
log(N)

k log(log(N))

⌋
+ 1. Note that we have, since k ≤ log(log(N)),

cc·k ≤
(

2 log(N)

k log(log(N))

)k( log(N)
k log(log(N))

+1)

≤ N · (log(N))k

N log(log(log(N)))/ log(log(N))
· 1

log(log(N))

<
N

log(log(N))
<

N

2
≤ N −N1

By the standard Ramsey Theorem, there is a k sized C ′-homogeneous set H ⊆
[N1, N ]. Hence C admits a k sized homogeneous set.

It should be noted that this is of interest when f grows slowly (e.g. f(m) =
log∗(m)).

Theorem 3.3.2. Suppose j ∈ N and g(i) = log(i)
j

. Then there exists some k such that
for all N it holds that N 9 (k)g.
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Proof. Given j ≥ 2 we set s = 2j and k = 2s + 1 and construct a g-regressive
coloring C : N2 → N where there exists no H ⊆ N of size ≥ k that is homoge-
neous for C. For any n ∈ N, let rs(n) = (n0, . . . , nℓ−1), where ℓ = ⌊ logs(n)⌋ + 1
and ni < s, be the representation of n in s basis, i.e. n = n0 ·sℓ−1+ · · ·+nℓ−1 ·s0.

For any m,n ∈ N such that m < n and ℓ = ⌊logs(m)⌋ + 1 = ⌊logs(n)⌋ + 1,
let f(m,n) = min{i < ℓ : mi < ni}, where rs(m) = (m0, . . . ,mℓ−1) and rs(n) =
(n0, . . . , nℓ−1). We define C as

C(m,n) =

{
⌊logs(m)⌋ if ⌊logs(m)⌋ ̸= ⌊logs(n)⌋;
f(m,n) if ⌊logs(m)⌋ = ⌊logs(n)⌋.

Note that C is g-regressive since for all m,n ∈ N it holds that C(m,n) ≤
logs(m) = log(m)

j
.

Observation 3.3.3. Let Y = {y1, y2, ..., ys+1} where y1 < y2 < ... < ys+1, be a
homogeneous set for C. Then ⌊logs(y1)⌋ < ⌊logs(ys+1)⌋.

To show Observation 3.3.3, let Y be a homogeneous set for C and suppose
to the contrary that ⌊logs(y1)⌋ = ⌊logs(ys+1)⌋. From the definition of C we get
that f is constant on Y . Thus elements of Y , pairwise differ in the ith value in
their s basis representation for some index i, which is impossible since there
are only s possible values for any index. Contradiction.

Now let H = {x1, x2, ..., x2s+1}, where x1 < x2 < ... < x2s+1, and sup-
pose to the contrary that H is homogeneous for C. By Observation 3.3.3 we
get that ⌊logs(x1)⌋ < ⌊logs(xs+1)⌋ < ⌊logs(x2s+1)⌋ and therefore C(x1, xs+1) <
C(xs+1, x2s+1) contrary to homogeneity.



Chapter 4

Phase Transition Threshold of
g-large Ramsey Numbers

In this chapter we show that the threshold for Ackermannian g-large Ram-
sey numbers lies above all functions log(n)/f−1(n) obtained from an increasing
primitive recursive f and below the function log(n)/Ack−1(n).

Worded differently, for a nondecreasing and unbounded g to have primi-
tive recursive g-large Ramsey numbers it is necessary and sufficient that g is
eventually dominated by log(n)/t for all t > 0 and that the rate at which g
gets below log(n)/t is not too slow, namely, is primitive recursive in t: if g gets
below log(n)/t only after an Ackermannianly long time M(t), then the g-large
Ramsey numbers are still Ackermannian.

Here, in this thesis, log denotes the logarithm to base 2.
We begin by recalling some notations and definitions from Chapter 2. A

nonempty H ⊆ N is g-large for a function g : N → N if |H| ≥ g(minH). The
symbol

X →∗
g (k)c

means: for every coloring C : [X]2 → c there is a g-large C-homogeneous
H ⊆ X such that |H| ≥ k. The g-large Ramsey number of k and c, denoted
R∗

g(k, c), is the least N so that N →∗
g (k)c.

The notion of g-largeness is a generalization of the notion of a relatively
large set introduced by Paris and Harrington in [66]. Erdős and Mills [33]
proved that R∗

Id is Ackermannian. On the other hand, for a constant function
g = t, the g-large Ramsey number is just the standard Ramsey number (that is,
R∗

g(k, c) = R( max {k, t} , c)) and thus primitive recursive.
We next compute the sharp thresholds on g at which g-large Ramsey num-

bers cease to be primitive recursive and become Ackermannian.
In this chapter we shall work with a new hierarchy of functions Fm. It is

similar to that of Am, only it starts with a faster growing function than the
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successor function:

Fm(i)
∆
=

{
2i if m = 0,
F

(i ·−1)
m−1 (i) otherwise.

Here i ·− 1 = i − 1 if i > 0 and 0 otherwise. This is merely done for technical
convenience and helps us handle the logarithm much better. For any m ∈ N,
Fm is an increasing primitive recursive function. The function F : N → N,
defined by F (i)

∆
= Fi(i), is Ackermannian. In fact, F and Ack have almost

the same growth rate. The results in this chapter are taken almost verbatim
from [55].

4.1 g-large Lower Threshold

We employ classical bounds by Erdős and Rado for the lower bound and
a result by Abbott [1] for the upper bound which relies on the probabilistic
method of Erdős. The following lemma follows e.g. from Theorem 1 in [35].

Lemma 4.1.1. R(k, c) ≤ cc·k−1 = 2(c·k−1)·log(c) for any c, k ≥ 2.

For m ∈ N and a function B : N → N set

fm(i) =

⌊
log(i)

F−1
m (i)

⌋
and fB(i) =

⌊
log(i)

B−1(i)

⌋
.

Lemma 4.1.2. Let B : N → N be a nondecreasing and unbounded positive function.
Then for every c, k ≥ 2 it holds that R(t, c) + B(c · ⌈ log(c) ⌉) →∗

fB
(k)c, where

t = max{k,B(c · ⌈ log(c) ⌉)}.

Proof. Given c, k ≥ 2 let N = R(t, c). By Lemma 4.1.1

N +B(c · ⌈ log(c) ⌉) ≤ 2(c·t−1)·log(c) +B(c · ⌈ log(c) ⌉) ≤ 2c·log(c)·t .

Now, let C : [N + B(c · ⌈ log(c) ⌉)]2 → c be given. Since N + B(c · ⌈ log(c) ⌉) −
B(c · ⌈ log(c) ⌉) = N , there is an H ⊆ [B(c · ⌈ log(c) ⌉), N + B(c · ⌈ log(c) ⌉))
homogeneous for C, such that |H| ≥ t. Therefore, we have

log(min(H))

B−1(min(H))
≤ c · log(c) · t

B−1(B(c · ⌈ log(c) ⌉))
≤ t ≤ |H| .

Thus H is fB-large.

Theorem 4.1.3. For every fixed m the function R∗
fm

is primitive recursive.

Proof. By Lemma 4.1.2, R∗
fm

is bounded by a primitive recursive function and
thus is itself primitive recursive, as the class of primitive recursive functions is
closed under the bounded µ-operator.
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4.2 g-large Upper Threshold

We now turn to establish a complement for Theorem 4.1.3.

Lemma 4.2.1. There are positive integers c0 and M such that for all c ≥ 2 and k ≥ M

it holds that R(k, c) ≥ 2
1
c0

·c·k.

Proof. See Abbott [1].

Lemma 4.2.2. Let M ≥ 2 and c0 be the constants from Lemma 4.2.1. Let d ≥ 4 be
arbitrary, but fixed. Put ε = 1

d
and K = 2 · d ·M + 1. Then

R∗
f̂ε
(k, c0 ·M · d · 2) > 22

k·d

for all k ≥ K, where f̂ε(i) = ε · log(i) .

Proof. Pick k ≥ K. Let n0 = 0, n1 = R(k, c0)− 1, and for 1 ≤ i < k − 1

ni+1 = ni +R(⌊ ε · log(ni)⌋ , c0 ·M · d · 2− 1)− 1.

Finally put n = nk−1. We claim:

n 9∗
f̂ε
(k)c0·M ·d·2

Choose C0 : [n0, n1)
2 → c0 such that every C0-homogeneous H ⊆ [n0, n1) satis-

fies |H| < k. For 1 ≤ i < k − 1 choose

Ci : [ni, ni+1)
2 → c0 ·M · d · 2− 1

such that if H is Ci-homogeneous then |H| < ⌊ ε · log(ni)⌋.
Define C : [n]2 → c0 ·M · d · 2 as follows:

C(u, v) =

{
Ci(u, v) + 1 if ni ≤ u < v < ni+1,

0 otherwise.

Let H be C-homogeneous. If the color of H is 0 then |(H ∩ [ni, ni+1))| ≤ 1,
hence |H| ≤ k − 1 < k. If the color of H under C is greater than 0 then
H ⊆ [nj, nj+1] for some j and H is homogeneous for Cj . If j = 0 then |H| < k
by choice of C0. If j > 0 then

|H| < ⌊ ε · log(nj)⌋ ≤ ⌊ ε · log(min(H))⌋ .

This implies that n < R∗
f̂ε
(k, c0 ·M · d · 2).

Now we use induction on 1 ≤ i < k to prove that ni ≥ 22
i·d·M . For i = 1 we

have, by Lemma 4.2.1,
n1 ≥ 2

1
c0

·k·c0 − 1 ≥ 22·d·M
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since k ≥ K = 2 · d ·M + 1. The induction hypothesis yields for i < k − 1

⌊ ε · log(ni)⌋ ≥
⌊
ε · 2i · d ·M

⌋
= 2i ·M .

Thus by Lemma 4.2.1 we have for the induction step

ni+1 ≥ R(⌊ ε · log(ni)⌋ , c0 ·M · d · 2− 1) ≥ 2
1
c0

·(c0·M ·d·2−1)·2i·M ≥ 22
i+1·d·M

and hence it holds that R∗
f̂ε
(k, c0 ·M · d · 2) > n = nk−1 ≥ 22

k−1·d·M ≥ 22
k·d since

M ≥ 2.

In the proof above, the growth rate of R is high enough to compensate for
the logarithms and ensures that ni grows faster than the double exponential
function. We can furthermore show that R∗

f̂ε
is Ackermannian:

Lemma 4.2.3. With the notation of Lemma 4.2.2 we have for all m ∈ N:

R∗
f̂ε
(k, c0 · d ·M · 2 +m) > 2d·Fm(k)

Proof. We prove the claim simultaneously for all k ≥ K, by induction on m. If
m = 0, it is simply Lemma 4.2.2, since F0(k) = 2k. Now assume that the claim
is true for m ≥ 0.

Put n0 = 0 and n1 = R∗
f̂ε
(k, c0 ·d ·M ·2+m)−1. By recursion on i > 0 define

ni+1 = R∗
f̂ε
(⌊ ε · log(ni)⌋ , c0 · d ·M · 2 +m)− 1.

Finally put n = nk−1. We claim that

[0, n) 9∗
f̂ε
(k)c0·d·M ·2+m+1.

Choose C0 : [0, n1)
2 → c0 · d · M · 2 + m such that every C0-homogeneous

H satisfies |H| < max{k, f̂ε(minH)}. And for each 1 ≤ i < k − 1 choose
Ci : [0, ni+1)

2 → c0 ·d ·M ·2+m such that every Ci-homogeneous H ⊆ [n0, ni+1)

satisfies |H| < max{⌊ ε · log(ni)⌋ , f̂ε(minH)}.
Define C : [0, n)2 → c0 ·M · d · 2 +m+ 1 as follows:

C(u, v) =

{
Ci(u, v) + 1 if ni ≤ u < v < ni+1,

0 otherwise.

Let H be C-homogeneous. If the color of H is 0 then |H ∩ [ni, ni+1)| ≤ 1 for
every i < k−1, hence we have |H| ≤ k−1 < k. If the color of H is greater than
0 then H ⊆ [nj, nj+1) for some j and H is homogeneous for Cj . If j = 0 then
|H| < max{k, f̂ε(minH)}. If j > 0 then

|H| < max{ε · log(nj), f̂ε(minH)} ≤ f̂ε(minH) .
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By induction on 1 ≤ i < k we show ni ≥ 2d·F
(i)
m (k). First note that we have

n1 = R∗
f̂ε
(k, c0 · d ·M · 2 +m)− 1 ≥ 2d·Fm(k)

by the main induction hypothesis. Now the induction hypothesis yields for
i ≥ 1 that ε · log(ni) ≥ F

(i)
m (k) ≥ k ≥ K. Hence again the main induction

hypothesis yields

ni+1 = R∗
f̂ε
(⌊ ε · log(ni)⌋ , c0 · d ·M · 2 +m)− 1 ≥ 2d·F

(i+1)
m (k)

Therefore R∗
f̂ε
(k, c0 · d ·M · 2 +m+ 1) > n = nk−1 ≥ 2d·F

(k−1)
m (k) = 2d·Fm+1(k).

Theorem 4.2.4. Suppose B : N → N is nonzero, nondecreasing and unbounded, and
B(i) ≤ F (i) for all i. Let c0 and M be as in Lemma 4.2.1. Then

N(d) = R∗
fB
(2 · d ·M + 1, c0 · d ·M · 2 + d) > B(d)

for all d ≥ 4.

Proof. Assume to the contrary that it is not so for some d ≥ 4. Then for any
i ≤ N(d) we have

log(i)

B−1(i)
≥ 1

d
· log(i)

since B−1(i) ≤ d. Set Kd = 2 · d ·M , ε = 1
d
, and denote f̂ε(i) = ε · log(i). Clearly,

every fB-large set for a given coloring C : [N(d)]2 → c0 ·Kd+d is also a f̂ε-large
set for C. Thus, we have

R∗
fB
(Kd + 1, c0 ·Kd + d) ≥ R∗

f̂ε
(Kd + 1, c0 ·Kd + d)

≥ Fd(Kd)

> F (d)

≥ B(d)

by Lemma 4.2.3. Contradiction!

Theorem 4.2.5. Suppose B : N → N is positive, unbounded and nondecreasing.
Then the function R∗

fB
is Ackermannian iff B is Ackermannian.

Proof. Suppose B is Ackermannian. By replacing B with min{B,F}, we as-
sume that B(i) ≤ F (i) for all i ∈ N. This is done with no loss of generality,
since clearly, if B′(i) ≤ B(i) for all i ∈ N and R∗

fB′ is Ackermannian, then R∗
fB

is Ackermannian too.
By the previous theorem, R∗

fB
composed with the primitive recursive func-

tions r1(i) = 2 · i ·M +1 and r1(i) = c0 · i ·M · 2+ i is Ackermannian. Therefore,
R∗

fB
itself is Ackermannian.
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Conversely, suppose that B is not Ackermannian, and fix an increasing
primitive recursive function f so that for infinitely many i ∈ N it holds that
B(i) < f(i). For each such i, let ci = max{c : c · log(c) ≤ i} and let ki = B(i).
By Lemma 4.1.2, it holds that R(ki, ci) + B(ci · ⌈ log (ci) ⌉) →∗

fB
(ki)ci . Since

f(i) ≥ B(ci ·⌈ log (ci) ⌉), it holds that R∗
fB
(ki, ci) ≤ R(ki, ci)+f(i). This is true for

infinitely many ci and infinitely many ki. Thus, R∗
fB

is not Ackermannian.



Chapter 5

Phase Transition Threshold of
Function Hierarchies

In this chapter we investigate phase transition phenomena that are related
to natural subclasses of the class of recursive functions. In particular we take a
closer look at the Grzegorczyk hierarchy from the phase transition perspective.
For this purpose, let us assume that we are given two functions g, h : R ∩
[0,∞) → R ∩ [0,∞). For r ∈ R, let ⌊r⌋ denote the largest integer not exceeding
r.

Define for x ∈ N

B(g, h)0(x)
∆
= g(x),

B(g, h)k+1(x)
∆
= B(g, h)

⌊h(x)⌋
k (x) i.e., ⌊h(x)⌋ many iterations,

B(g, h)ω(x)
∆
= B(g, h)⌊x⌋(x).

We allow here for real number values in the range of B(g, h)k to avoid
messy rounding to integers at every step of the calculation. This would be nec-
essary if we would deal with number-theoretic functions only. We recall that
the Ackermann function is defined as Ack(n) = B(g, h)ω(n) where g(x) = x+1
and h = Id, and that Ai(n) = B(g, h)i(n) is called the ith approximation of
the Ackermann function. It is well known (see e.g., [17]) that each approxi-
mation Ai is primitive recursive and that every primitive recursive function is
eventually dominated by some Ai. Thus the Ackermann function eventually
dominates every primitive recursive function.

To avoid trivialities we assume that for some ε > 0 we have g(x) ≥ x + ε
for all but finitely many x [an iteration of the identity map would, in our con-
text, of course be senseless] and we assume that h is weakly increasing and
unbounded. Now, fixing g, one may ask for which h the function B(g, h)ω
becomes Ackermannian. Similarly, fixing h, one may ask for which g the func-
tion B(g, h)ω becomes Ackermannian. So in contrast to the situations previ-
ously considered, the phase transition depends on two order parameters and
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we will indicate that the phase transition has a surprisingly rich structure.
In the rest of the chapter we use the following notation to define the func-

tion hierarchies we consider.

Notation. Let |x| be the non-negative part of the logarithm function with
respect to base two, that is |x| ∆

= max {log2(x), 0}. Let |x|l+1

∆
= ||x||l where

|x|0
∆
= x. Then |·|l is the lth iterate of |·|, hence we have |2l(x)|l = x and

|x|2 = ||x|| = |(|x|)|.
The results in this chapter are taken almost verbatim from [64].

5.1 Iteration Hierarchies for g(x) = x + 1

In this section we fix g(x) = x + 1 and present a rather sharp threshold
on the behavior of such function hierarchies. This particular case is resolved
using results presented in Chapter 3; thus besides being interesting in its own
right, this phase transition investigation reveals a somewhat surprising intrin-
sic relation between regressive Ramsey functions and parameterized iteration
hierarchies. We note that the results needed for this section appear in Sec-
tion 3.1 and in Section 3.2.2. The reader is referred to the appropriate results
whenever they are used.

Using the notation of Chapter 3, we denote B(g, x1/t), where t ∈ N is a
constant, by (ft). Namely, (ft)

j
i (x) = B(g, h)ji (x) for all i, j and x, where g(x) =

x+ 1 and h(x) = x1/t.
We recall that Claim 3.2.9 asserts that for every t > 0 and n > max {4, 3t, tt}

it holds that
(ft)i+t2+2t+2(n) > Ai(n).

Claim 5.1.1. For every i ∈ N and for every n ∈ N such that:

1. n > i+ (||n||)2 + 2||n||+ 2 and

2. Ack(||n||) > Ai(n)

it holds for hAck(n)
∆
= n

1
Ack−1(n) that

B(g, hAck)i+(||n||)2+2||n||+2(n) > Ai(n).

Proof. To show that, we examine two cases. First, if it holds that
B(g, hAck)i+(||n||)2+2||n||+2(n) ≥ Ack(||n||), then we are done by demand 2. Oth-
erwise, we may fix t = ||n|| and we have that for all y ∈ {0, . . . ,Ack(t)− 1} it

holds that y
1
t < y

1
Ack−1(y) . Note that B(g, hAck)i+t2+2t+2 is non-decreasing since

hAck is non-decreasing. Thus, B(g, hAck)i+t2+2t+2(n) ≥ (ft)i+t2+2t+2(n) and by
Claim 3.2.9, the latter term is larger than Ai(n).
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We remark that the choice of t = ||n|| is arbitrary and any α−1, such that α
is a monotone increasing primitive recursive function and α(x) > xx for large
enough x, would do the job.

Theorem 5.1.2. Let g(x) = x + 1 and hα(x) = x
1

B(g,id)−1
α (x) . Then B(g, hα)ω is

Ackermannian iff α = ω.

Proof. The ‘if’ direction is in fact the claim that if hα(x) = x
1

Ack−1(x) then B(g, hα)ω
eventually grows faster than any primitive recursive function. It would suffice
to show that for every i ∈ N, there exists x0 such that for all x > x0, it holds
that B(g, hα)ω(x) > Ai(x). Now, this is a direct corollary of Claim 5.1.1, since it
is clear that for every such i there exists some x0 ∈ N such that for all x > x0

it holds that x ≥ i+ (||x||)2 + 2||x||+ 2 and that Ack(||x||) > Ai(x) and thus
B(g, hα)x(x) ≥ B(g, hα)i+(||x||)2+2||x||+2(x), which by Claim 5.1.1 is larger than
Ai(x). In other words, for every primitive recursive function f , B(g, hα)x(x)
eventually dominates f .

The ‘only if’ direction is the claim that if α = i for some i ∈ N, and there-

fore hα(x) = x
1

A−1
i

(x) , then B(g, hα)ω(x) is not Ackermannian in terms of x.
Note this implies the same for any hα of the form hα(x) = x

1
β−1(x) where β is

a non-decreasing unbounded primitive recursive function. To show this di-

rection, for α = i > 3 and hα(x) = x
1

A−1
i

(x) , fix hβ(x) = 4(hα(x))
2 = x

1
β−1(x)

where β−1(x) =
|x|A−1

i (x)

2|x|+2A−1
i (x)

. We again refer to Chapter 3. Corollary 3.1.3

states that the hβ-regressive Ramsey number R
reg
hβ
(k) is primitive recursive in

k since Ai is primitive recursive. On the other hand, Corollary 3.2.22 asserts
that if B(g, hα)ω(k) is Ackermannian in k, using the function µhβ

(k) = kk, we
may obtain an Ackermannian lower bound also for R

reg
hβ
(k), but this would

be a contradiction. For the case of α ≤ 3, observe that hα ≤ hα+1 and thus
B(g, hα)ω(k) ≤ B(g, hα+1)ω(k).

5.2 Slow Growing Iteration Hierarchies

For the rest of this section let F0(x)
∆
= 2x and Fk+1(x)

∆
= F x

k (x). Then Fk is
primitive recursive (in each k). Further let F (x)

∆
= Fx(x). Then F is a slight

variant of the Ackermann function, hence Ackermannian and of course not
primitive recursive. In addition let 2l(x)

∆
= F l

0(x).
For the rest of the chapter fix ε > 0, let g0(x) = x+ ε and define recursively

gk+1(x) = 2gk(|x|). Then
gl(x) = 2l(|x|l + ε).
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These scaling functions grow faster and faster when l becomes larger but
no gl is of exponential growth. The following result classifies slow-growing
iteration hierarchies for a rather large class of order parameters.

Theorem 5.2.1. Let 1 ≥ ε > 0 and let d be a natural number.

Define h[d, l](x) ∆
= |x|l

1

F−1
d

(|x|l) and

B[d, l]k(x)
∆
= B(gl, h[d, l])k(x).

Let C = max
{
2l(Fd(2

k+2))
}

. Then for all x ≥ C and all i ≤ |x|
1

F−1
d

(|x|l)

l we have

B[d, l]ik(x) ≤ 2l(|x|l + |x|
2k+1

F−1
d

(|x|l)

l · i).

Hence the diagonal function B[d, l] is primitive recursive.

Proof. Since gl and hence B[d, l]k are monotone in ε we may assume that ε = 1.
We prove the claim by main induction on k. If k = 0 then B[d, l]i0(x) = gil(x).
We prove the claim by subsidiary induction on i. Assume first that i = 1. We
prove the claim by another subsidiary induction on l. Assume l = 0. Then for
x ≥ C:

B[d, 0]10(x) = g0(x)

= x+ 1

≤ 20(|x|0 + |x|
21

F−1
d

(|x|0)

0 ).

Assume now l > 0. Then the induction hypothesis for l−1 yields for x ≥ C:

B[d, l]10(x) = gl(x)

= 2gl−1(|x|)

≤ 22l−1(||x||l−1+||x||

2

F−1
d

(||x||l−1)

l−1 )

= 2l(|x|l + |x|
2

F−1
d

(|x|l)

l ).

Now consider the case 1 ≤ i < |x|
1

F−1
d

(|x|l)

l . Then we obtain by the subsidiary
induction hypothesis

B[d, l]i+1
0 (x) = B[d, l]0

(
B[d, l]i0(x)

)
≤ B[d, l]0(2l

(
|x|l + |x|

2

F−1
d

(|x|l)

l · i)
)

= 2l(|2l(|x|l + |x|
2

F−1
d

(|x|l)

l · i)|
l
+ 1)

= 2l(|x|l + |x|
2

F−1
d

(|x|l)

l · i+ 1)

≤ 2l
(
|x|l + |x|

2

F−1
d

(|x|l)

l · (i+ 1)
)
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since by assumption x ≥ C = 2l(Fd(2
k+2)).

Now assume that k > 0. We prove the claim by subsidiary induction on i.
If i = 1 then the main induction hypothesis yields

B[d, l]k(x) = B[d, l]

|x| 1

F−1
d

(|x|l)
l


k−1 (x)

≤ 2l
(
|x|l + |x|

2k

F−1
d

(|x|l)

l ·

⌊
|x|

1

F−1
d

(|x|l)

l

⌋ )
≤ 2l

(
|x|l + |x|

2k+1

F−1
d

(|x|l)

l

)
.

If 1 ≤ i < |x|
1

F−1
d

(|x|l)

l then we obtain by the subsidiary induction hypothesis

B[d, l]i+1
k (x) = B[d, l]k(B[d, l]ik(x))

≤ B[d, l]k(2l(|x|l + |x|
2k+1

F−1
d

(|x|l)

l · i)).

Now set y = 2l(|x|l + |x|
2k+1

F−1
d

(|x|l)

l · i). Then we obtain from the main induction

hypothesis and i < |x|
1

F−1
d

(|x|l)

l that

B[d, l]i+1
k (x) ≤ B[d, l]

|y| 1

F−1
d

(|y|l)
l


k−1 (y)

≤ 2l

(
|y|l + |y|

2k

F−1
d

(|y|l)

l ·

⌊
|y|

1

F−1
d

(|y|l)

l

⌋)
≤ 2l

(
|x|l + |x|

2k+1

F−1
d

(|x|l)

l · i+ |y|
2k+1

F−1
d

(|y|l)

l

)
.

The claim would now follow from

|y|
2k+1

F−1
d

(|y|l)

l ≤ |x|
2k+1

F−1
d

(|x|l)

l .

Since F−1
d (|x|l + |x|

2k+1

F−1
d

(|x|l)

l · i) ≥ F−1
d (|x|l) and i < |x|

1

F−1
d

(|x|l)

l this would follow
from (

|x|l + |x|
2k+1+1

F−1
d

(|x|l)

l

) 2k+1

F−1
d

(|x|l) ≤ |x|
2k+1

F−1
d

(|x|l)

l

hence from

|x|l + |x|
2k+1+1

F−1
d

(|x|l)

l ≤ |x|
2k+1

2k+1

l .

This finally follows from the assumption that x ≥ C = 2l(Fd(2
k+2)).
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5.3 Fast Growing Iteration Hierarchies

In this section we show that slightly faster-growing functions in the role
of the functions h[d, l] from Theorem 5.2.1 yield Ackermannian growth of the
induced iteration hierarchies. Let us recall the definition of the Ackermann
hierarchy from Section 2.2. We put A0(x)

∆
= x + 1 and Ak+1(x)

∆
= Ax

k(x). Thus,
if we put Ack(x) ∆

= Ax(x), then Ack is the Ackermann function that eventually
dominates every primitive recursive function. Further recall that our scale
functions are defined as follows: g0(x) = x + ε and gk+1(x) = 2gk(|x|). Let us
further assume from now on that d > 0.

Let us fix constants Ck,l for k > 0 and l ≥ 0 such that⌊
|x|

1
d
l

⌋
· |x|

k−1
d

l ≥ |x|
k
d
l · 1

2

for x ≥ Ck,l. We may assume that the function k 7→ Ck,l is primitive recursive
in k for any fixed l.

Theorem 5.3.1. Assume 1 ≥ ε > 0 and let d be a natural number. Let

C[d] = max

{
C3·d,l, 2l

(⌊
23·d

ε

⌋
+ 1

)}
.

Define

h[[d, l]](x) = d

√
|x|l

and
B[[d, l]]k(x) = B(gl, h[[d, l]])k(x).

Then we have
B[[d, l]]3·d+i+1(2l(x

d)) ≥ 2l((Ai(x))
d)

for x ≥ C[d].

Proof. Recall that that gl(x) = 2l(ε + |x|l). By induction on i one verifies that
B[[d, l]]i0(x) = gil(x) = 2l(ε ·i+ |x|l). Let εk = ε

2k
, we now claim that the following

equation holds,

B[[d, l]]ik(x) ≥ 2l(εk · i · |x|
k
d
l + |x|l) (5.1)

for i, k ≥ 1 and x ≥ Ck,l. We prove (Equation (5.1)) by main induction on k and
subsidiary induction on i. Assume that k = 1. Then we obtain for i = 1 that

B[[d, l]]11(l)(x) = B[[d, l]]

⌊
|x|

1
d
l

⌋
0 (x)

≥ 2l(ε ·
⌊
|x|

1
d
l

⌋
+ |x|l)

≥ 2l(ε1 · |x|
1
d
l + |x|l)
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since x ≥ C1,l. The subsidiary induction hypothesis yields

B[[d, l]]i+1
1 (x) = B[[d, l]]11(B[[d, l]]i1(x))

≥ B[[d, l]]11(2l(ε1 · i · |x|
1
d
l + |x|l))

≥ 2l(ε1 · (|2l(ε1 · i · |x|
1
d
l + |x|l)|l)

1
d + |2l(ε1 · i · |x|

1
d
l + |x|l)|l)

≥ 2l(ε1 · |x|
1
d
l + ε1 · i · |x|

1
d
l + |x|l).

Assuming Equation (5.1) for k we show it for k+1 by subsidiary induction on
i as follows: First let i = 1. Then

B[[d, l]]k+1(x) = B[[d, l]]

⌊
|x|

1
d
l

⌋
k (x)

≥ 2l(εk ·
⌊
|x|

1
d
l

⌋
· |x|

k
d
l + |x|l)

≥ 2l(εk+1 · |x|
k+1
d

l + |x|l)

since x ≥ Ck+1,l. For the induction step of the subsidiary induction we obtain

B[[d, l]]i+1
k+1(x) = B[[d, l]]k+1(B[[d, l]]ik+1(x))

≥ B[[d, l]]k+1(2l(εk+1 · i · |x|
k+1
d

l + |x|l))

≥ 2l(εk+1 · (|2l(εk+1 · i · |x|
k+1
d

l + |x|l)|l)
k+1
d + |2l(εk+1 · i · |x|

k+1
d

l + |x|l)|l)

≥ 2l(εk+1 · |x|
k+1
d

l + εk+1 · i · |x|
k+1
d

l + |x|l).

Equation (5.1)) yields B[[d, l]]3·d(x) ≥ 2l(|x|2l ) for x ≥ C[d].
By induction on i this yields

B[[d, l]]i3·d(x) ≥ 2l(|x|2
i

l ) (5.2)

for x ≥ C[d].
We claim now that

B[[d, l]]d·3+i+1(2l(x
d)) ≥ 2l((Ai(x))

d)

for x ≥ C[d]. The proof is by induction on i. For i = 0 we find by (Equa-
tion (5.2))

B[[d, l]]3·d+1(2l(x
d)) ≥ B[[d, l]]x3·d(2l(x

d))

≥ 2l((|2l(xd)|l)
2x)

≥ 2l((A0(x))
d).

Assuming the claim for i we obtain it for i+ 1 as follows:
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B[[d, l]]3·d+1+i(2l(x
d)) ≥ B[[d, l]]x3·d+i(2l(x

d))

≥ 2l((A
x
i (x))

d)

= 2l((Ai+1(x))
d).

Theorem 5.3.2. Assume 1 ≥ ε > 0. Let C[d] = max
{
C3·d,l, 2l

(⌊
23·d

εk

⌋
+ 1
)}

.

Define h[[l]]⋆(x) = |x|l
1

Ack−1(x) . Let

B[[l]]⋆k(x) = B(gl, h[[l]]
⋆)k(x)

and
B[[l]]⋆(x) = B[[d, l]]⋆⌊x⌋(x).

Then we have
B[[l]]⋆(2l((4 · d+ C[d])d)) > Ack(d).

Hence B[[l]]⋆ is not primitive recursive.

Proof. Assume for a contradiction that Ack(d) ≥ B[[l]]⋆(2l((4 · d+C[d])d)). Then

for any i ≤ B[[l]]⋆4·d+C[d](2l((4 · d + C[d])d)) we have Ack−1(i) ≤ d hence |i|
1
d
l ≤

|i|
1

Ack−1 (i)

l and therefore by Theorem 5.3.1

B[[l]]⋆(2l((4 · d+ C[d])d)) ≥ B[[d, l]]⋆4·d+C[d](2l(4 · d+ C[d])d)

≥ B[[d, l]]4·d+C[d](2l(4 · d+ C[d])d)

> 2l(Ad(4 · d+ C[d]))d

> Ack(d).

Contradiction! Hence B[[l]]⋆ is not primitive recursive since d 7→ C[d] is primi-
tive recursive.

It seems plausible that Theorems 5.2.1, 5.3.1 and 5.3.2 hold for all start func-
tions gl where x + ε ≤ g0(x) ≤ x + xc for some fixed c < 1 and the same
functions h(d)l and h(l)⋆. So we expect that our phase transition results will be
structurally stable under small perturbations of the starting function g.

For the record, let us consider the situation when one starts with an ex-
ponential or double exponential function. This leads rather quickly to Acker-
mannian growth

Theorem 5.3.3. 1. Let g(x) = 2x and h(x) = |x|k. Then B(g, h)ω is Ackerman-
nian.

2. Let g(x) = 22
x and h(x) = min {l : |x|l ≤ 1}. Then B(g, h)ω is Ackermannian.

Proof. 1. By induction on k one easily shows B(g, h)k(2k(x)) ≥ 2k(Ak(x)).
2. By induction on k one easily shows B(g, h)k(2k(x)) ≥ 2Ak(x)(Ak(x)).



Chapter 6

Some Background in Private Data
Analysis

Research in the area of private data analysis is mainly concerned with the
collision of two interests that emerges when dealing with large sets of sensitive
individual data. On the one hand, it may be highly beneficial in many ways to
analyze these large data sets; on the other hand it is usually sensible and even
essential to require that the privacy of the individual be preserved. Real life
examples of such scenarios are abundant and large collections of individual
data records are collected and maintained by statistical agencies such as the
U.S. Census Bureau, health care organizations, financial organizations, search
engines. There are two main questions posed by this scenario. The first is what
analyses are both useful and privacy preserving. The second question, is how
to compute such analyses in a given setup. We continue a line of rigorous in-
vestigation of these questions, which started in the work of Dinur and Nissim
[23].

In this chapter we give some notations and basic definitions from the area
of private data analysis, and survey some of the basic results mostly concerned
with answering the what question. In Chapter 7 we combine the discussions
regarding these two questions. While Chapter 7 is almost completely self-
contained, here we aim at presenting a slightly broader view of the abstract
model of computation, of which the distributed and local models considered
in Chapter 7 are possible realizations.

For a much broader view and an in depth consideration of the main ques-
tions and results in the area of private data analysis, we refer the reader to
[62].
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6.1 The Abstract Model – A Statistical Database

To model private computation we use the setting of a statistical database,
containing records of sensitive information accompanied by some algorithmic
mechanism. The users of the database can issue queries about the records
stored in the database and, in turn, get the result of the database mechanism
applied to the given query. We think of the result of the mechanism as being
some approximation of the value of the issued query. For a more formal defi-
nition of the model, we first recall the definition of a randomized function (see
Figure 6.1).

Definition 6.1.1. Let D, DR, and R be sets. An n-ary randomized function is a
function f̂ : Dn ×DR → R, where D is the domain of f̂ and DR is the set of random
inputs. For x = (x1, . . . , xn) ∈ Dn we usually write f̂(x) with the underlying
convention that f̂(x1, . . . , xn) = f̂(x1, . . . , xn, r), where r is uniformly selected from
DR. Following this convention, we also usually omit DR from the notation and write
f̂ : Dn → R.

Definition 6.1.2. [The statistical database model] Let D and R be two sets. An n-
entry database x = (x1, . . . , xn) is an element in Dn. A statistical database is a
pair ⟨x,S⟩, where x is a database and S is some (abstract) randomized algorithmic
mechanism. A query is a function q : Dn → R. The interface between users and the
database is defined by an interplay of queries and responses. Upon a query q issued by
a user, the database mechanism responds with S(x, q). We will usually omit S from
the notation and simply refer to the database x.

By way of example, consider a setup where a query q = (q1, . . . , qn) is a
sequence of predicates (i.e., qi(xi) ∈ {0, 1}) and the mechanism replies with the
vector (y1, . . . , yn), where yi = qi(xi) w.p. α and yi = 1− qi(xi) w.p. 1− α. This
mechanism is known as the randomized response mechanism.

6.1.1 Interactive vs. non-interactive interplay

The exchange of queries and responses between a user and the database
may be limited to a single round, in which the user issues a single query an-
swered by a single response of the database. We call this type of interplay
non-interactive. We sometimes think of the non-interactive model as a setup in
which the database is not presented with any specific query, but rather releases
a sanitization of the information. Thereafter, users can compute queries freely
on this sanitized version of x (usually from a certain class of queries). For
example, this is the way the U.S. Census Bureau operates for most releases.
However, see “U.S. factfinder” for an interactive service.

Alternatively, an interactive interplay consists of multiple rounds. In each
round the user issues a new (adaptive) query to the the database and gets an
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x1

x2

x3

xn

Database mechanism

Query q

Response S(q,x)

User

Figure 6.1: The statistical database model.

appropriate response. In this case we view the concatenation of all responses
as the output of the database.

6.1.2 Communication models

The setting of a statistical database is sometimes an abstraction of the in-
terface between the database and its users and it applies to different setups.
Specifically, the database mechanism may be realized in different ways. We
next list a few possible models of communication that imply different realiza-
tions of the database mechanism.

The centralized (global) model. In the centralized model the database mech-
anism is controlled by a trusted entity, which has access to all records of the
database. Upon an issued query q, this entity can simply apply S to q and x
(see Figure 6.2).

The local model. In the local model we have n parties p1, . . . , pn, where party
pi holds an input xi. Similarly to the centralized model, the interface of the user
to the database mechanism is through a central entity C with the difference
that this entity is no longer considered to be trusted (see Figure 6.3). Upon a
query q, this C can issue a single query qi to each party pi and receive a sani-
tized response Si(xi, qi) from party pi. Thereafter, C applies some algorithm G
to (S1(x1, q1), . . . ,Sn(xn, qn)) and returns the output to the user as the response
of the query q. This setup is called the local non-interactive model.
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x1

x2

x3

xn

Database mechanism

Query q

Response S(q,x)

User

Trusted Party

Figure 6.2: The global model.

Alternatively, upon a query q, there can be multiple rounds, where in each
round C issues a query qi to each party pi and receives an appropriate response.
The query C sends to pi at each round depends on answers C got from all
parties in previous rounds. Finally, at the end of this execution, C applies
some algorithm G to the communication transcript it viewed and returns the
output to the user as the response of the query q. This setup is called the local
interactive model.

x1

x2

x3

xn

Database mechanism

Query q

Response S(q,x)

User
Non-trusted

party

Figure 6.3: The local model.
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The distributed model. In the distributed model there are n parties, each
holding an input xi. The parties engage in a protocol and interact via some
underlying communication network. For a given query q of a user, we think
of S(x, q) as the functionality that should be computed by the protocol (see
Figure 6.4).

x1

x2

x3

xn

Database mechanism

Query q

Response S(q,x)

User

Figure 6.4: The distributed model.

Remark 6.1.3 (Interactive protocols). In Chapter 7 we discuss interactive protocols.
We stress that an interactive protocol is conceptually different from the interactive in-
terplay discussed earlier. In interactive interplay a user poses multiple queries to the
database and these queries need not be related. In contrast, a distributed protocol
is merely a tool for implementing the role of the database mechanism in the inter-
play between the database and the user. Thus, the goal of a protocol (interactive or
non-interactive) is to compute a single query q posed by the user to the mechanism
(possibly, out of a sequence of interactive interplay).

6.2 Differential Privacy

We use the definition of differential privacy suggested in [27] to capture the
notion of individual privacy. The privacy is defined to be a property of the
database mechanism (rather than, say, the output of the computation or the
knowledge of the adversary). Informally, we require that a change of any sin-
gle entry in the database may only slightly change the distribution of the re-
sponses of the database seen by the user (i.e., the view of a possible adversary).
Define the Hamming distance between two databases x,x′ as

dH(x,x
′) = |{i : xi ̸= x′

i}|.
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We say that two databases x,x′ are a neighboring pair if they differ in exactly
one entry, i.e., dH(x,x

′) = 1. For simplicity, in the definition below (and in
the rest of this chapter), we think of a fixed query q and denote S(·) = S(·, q),
i.e., the output of the mechanism of the database is a (randomized) function of
only the database x.

Definition 6.2.1 (ε-differential privacy [27]). Let f̂ : Dn → R be a randomized
function (an analysis). We say that f̂ is ε-differentially private if for all neighboring
vectors x,x′, and for all possible sets of outcomes V ⊆ R it holds that

Pr[f̂(x) ∈ V ] ≤ eε · Pr[f̂(x′) ∈ V ]. (6.1)

The probability is taken over the randomness of f̂ .
We say that a mechanism S is ε-differentially private if the randomized function it

computes is ε-differentially private.

One way to understand the definition is as a mental game, in which we let
an adversary pick i and pick all entries in the database except for xi; we fix xi

and apply the mechanism to the database, and let the adversary try to distin-
guish which of the two values of xi we chose. Let p be the probability that the
adversary succeeds; we say that p − 1

2
is the advantage of the adversary (over

an adversary that simply guesses by tossing a fair coin). The definition above
says that the advantage will be ε-small (where ε is the privacy parameter). This
seems to be a very strict notion of privacy.

Surprisingly, some powerful techniques exist for constructing analyses that
yield useful outcome, and yet preserve differential privacy. In the next section
we present one basic (and simple) technique, which belongs to a class of tech-
niques for constructing analyses via output perturbation. For more on this
class and on other techniques, see, e.g., [30, 9, 27, 63, 5, 59, 10].

Before moving on to describing ways for constructing differentially private
analyses, let us make a few remarks about Definition 6.2.1 and mention some
nice properties it entails (for a deeper consideration of this definition the reader
is referred to [62]).

A relaxed privacy definition. A natural relaxation of Definition 6.2.1 allows
for events occuring with negligible probability, for which the definition does
not hold (i.e., the ratio between probabilities of these events occurring with
some neighboring inputs is not bounded by eε). The next two examples give
some motivation to this relaxation. Let us first recall some properties of the
Laplace distribution Lap(λ) with mean µ = 0 and variance 2λ2. Denote by h(·)
the probability density function of this distribution and by H(·) the cumulative
distribution function. We have,

h(t) =
1

2λ
e−

|t|
λ and H(t) = 0.5 [1 + sgn(t) (1− exp(−|t|/λ))] .
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The following holds for all t, t′:

h(t)

h(t′)
=

e
−|t|
λ

e
−|t′|
λ

= e
|t′|−|t|

λ ≤ e
|t−t′|

λ , (6.2)

where the inequality follows from the triangle inequality.

Example 6.2.2. Consider a mechanism that given x ∈ {0, 1} outputs x+ Y where Y
is sampled according to Lap(1/ε). For every x, x′ ∈ {0, 1} it holds by Equation (6.2)
that hx(v)

hx′ (v)
≤ eε. It is easy to see that this implies the requirement of Definition 6.2.1.

Hence, this mechanism is ε-differentially private.
We remark that while this mechanism yields almost no usefulness, it is shown in

Section 6.3 how to generalize these ideas for constructing highly useful differentially
private analyses when dealing with larger databases.

Example 6.2.3. Consider a very similar mechanism to that of Example 6.2.2, which
given x ∈ {0, 1} outputs x+ Y ′ where Y ′ is obtained by limiting the random variable
Y , sampled as before (i.e., Y is sampled according to Lap(1/ε)), to be within the
interval [−k/ε, k/ε], for some large k (that is, if Y > k/ε we set Y ′ = k/ε, similarly,
if Y < −k/ε we set Y ′ = −k/ε, and otherwise we set Y ′ = Y ).

Note that the resulting mechanism is no longer ε-differentially private since it
holds that Pr [S(0) > k/ε] = 0 while Pr [S(1) > k/ε] > 0, hence the ratio between
these two probabilities is unbounded. However, note that the probability that S(1) >
k/ε is exponentially small in k; hence, the overall probability that an adversary is able
to distinguish between the two cases stays practically the same as in Example 6.2.2. It
is therefore only natural to still call this mechanism private.

Definition 6.2.4 ((ε, δ)-differential privacy [25]). A mechanism S is said to be
(ε, δ)-differentially private if for all neighboring pairs of databases x,x′ ∈ Dn, and
for all subsets of possible answers V :

Pr[S(x) ∈ V ] ≤ Pr[S(x′) ∈ V ]eε + δ . (6.3)

The probability is taken over the coin tosses of the mechanism.

Privacy of sets. While differential privacy is intended to capture the notion
of individual privacy and furthermore is defined with respect to a change in
a single entry, it would be somewhat disappointing to find out that it allows
a change in, say, two or three entries to cause a massive change in output dis-
tribution. Fortunately, as we next show, this is not the case, but rather privacy
of sets may deteriorate only linearly in the size of the set (for small sets and
for small enough ε). Obviously, for an analysis to be meaningful, the distribu-
tion on the outputs must change with a change of many of the entries in the
database the, thus privacy of sets must deteriorate, at least for large enough
sets.
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Lemma 6.2.5. Let S be an ε-differentially private mechanism and let x,x′ be two
databases such that dH(x,x

′) = c. Then

Pr[S(x) ∈ V ]
Pr[S(x′) ∈ V ]

≤ eεc .

Proof. We prove the lemma by induction on c. For c = 1 it is simply the ε-
differential privacy of S. Assume correctness for c and let x,x′ be two databases
such that dH(x,x

′) = c + 1. There exists a database x′′ such that dH(x,x
′′) = c

and dH(x
′′,x′) = 1. By Equation (6.1) and by the induction hypothesis, it fol-

lows that

Pr[S(x) ∈ V ]
Pr[S(x′) ∈ V ]

=
Pr[S(x) ∈ V ]
Pr[S(x′′) ∈ V ]

· Pr[S(x
′′) ∈ V ]

Pr[S(x′) ∈ V ]
≤ eεceε = eε(c+1) .

Composition. Another useful property of differential privacy is that even in
the presence of an adaptive adversary privacy stays meaningful after k rounds
when kε is not too big (i.e., privacy degrades in a linear fashion, as long as
k and ε are small enough). We recall it was defined that the output of the
mechanism in an adaptive interplay is the sequence of answers it supplied;
this does not fall into the scope of Definition 6.2.1, which assumes a single
known query. The following theorem shows what can be guaranteed if at each
round we activate a differentially private mechanism.

We next present a theorem from [25] asserting that even the relaxed (ε, δ)-
differential privacy is quite robust in this sense.

Theorem 6.2.6 ([25]). A mechanism that permits k adaptive interactions, each with
an (ε, δ)-differentially private mechanism, is (kε, kδ)-differentially private.

6.3 Private Data Analysis via Output perturbation
and Global Sensitivity

Given a function (query) q : Dn → R, it is natural to ask if there exists
some randomized approximation q̂ of q that is differentially private. Clearly,
this depends on our definition of approximation, but staying on the intuitive
level, the answer to this question is correlated with the sensitivity of q, namely,
the magnitude of change in the output of q, caused by a change in one entry
of the input. We next show that for queries that have low sensitivity (in a very
strong sense), it is enough to mask the value of q(x) by some carefully selected
random variable.



6.3 Private Data Analysis via Output perturbation and Global Sensitivity 61

Query sensitivity [27]. Given a query q : Dn → R, the local sensitivity is a
function of both q and a given database x.

LSq(x) = max
{x′:dH(x,x′)=1}

|q(x)− q(x′)|.

The global sensitivity is a function of q taken to be the maximum local sensitivity
over all databases x, i.e.,

GSq = max
x′∈Dn

(LSq(x)) .

The framework of output perturbation via global sensitivity was suggested
in [27]. In this framework we consider queries of the form q : Dn → R. The
outcome is obtained by adding to q(x) noise sampled from the Laplace distri-
bution, calibrated to GSq. Formally, q̂ is defined as

q̂(x) = q(x) + Y , where Y ∼ Lap(GSq/ε). (6.4)

This results in an ε-differentially private mechanism. To verify this, for a
database y, denote by hy(·) the probability density function of the distribution
on the output of q̂(y). For every pair of neighboring databases x,x′ and for
every possible outcome v ∈ R, we have that,

hx(v)

hx′(v)
≤ h(v − q(x))

h(v − q(x′))

≤ e

ε|(v−q(x))−(v−q(x′))|
GSq (by Equation (6.2))

≤ eε .

Example 6.3.1. The binary sum function SUM : {0, 1}n → R is defined as

SUM(x) =
n∑

i=1

xi.

For every two neighboring x,x′ ∈ {0, 1}n we have that | SUM(x) − SUM(x′)| = 1
and hence GSSUM = 1. Applying Equation (6.4), we get an ε-differentially private
approximation, f̂(x) = SUM(x) + Y , where Y ∼ Lap(1/ε); that is, we get a differ-
entially private approximation of SUM with O(1) additive error.

Distributed protocols. In Chapter 7 we consider a few possible realizations
of database mechanisms by distributed protocols. We recall that any analysis
that can be computed in the presence of a trusted party can be distributively
computed using a secure function evaluation protocol, such that the compu-
tation itself gives no information to any coalition. However, this translation
may be costly and result in non-efficient protocols. We investigate the implied
tradeoff between efficiency and accuracy.
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Chapter 7

Phase Transition Threshold of
Differentially Private Distributed
Protocols

In this chapter we observe a phase transition behavior of distributed pri-
vate protocols, where the communication complexity of such protocols changes
abruptly with a minor change in the magnitude of noise we allow to be created
by the system.

7.1 Distributed Private Data Analysis:
Simultaneously Solving How and What

We consider the combination of two directions in the field of privacy con-
cerning distributed private inputs – secure function evaluation [86, 46, 19, 7]
and differential privacy [27, 24]. While in both the goal is to privately evaluate
some function of individual inputs, the privacy requirements are significantly
different.

Secure function evaluation (SFE) allows n parties p1, . . . , pn, sharing a com-
mon interest in distributively computing a function f(·) of their inputs x =
(x1, . . . , xn), to compute f(x) while making sure that no coalition of t or fewer
curious parties learns more than the outcome of f(x), i.e., for every such coali-
tion, executing the SFE protocol is equivalent to communicating with a trusted
party that is given the private inputs x and releases f(x). SFE has been the sub-
ject of extensive cryptographic research (initiated in [86, 46, 19, 7]), and SFE
protocols exist for any feasible function f(·) in a variety of general settings.

SFE is an important tool for achieving privacy of individual entries – no
information about these entries is leaked beyond the outcome f(x). However,
this guarantee is insufficient in many applications, and care must be taken in
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choosing the function f(·) to be computed – any implementation, no matter
how secure, of a function f(·) that leaks individual information would not
preserve individual privacy.

A criterion for functions that preserve the privacy of individual entries, dif-
ferential privacy, has evolved in a sequence of recent works [23, 38, 30, 9, 27,
24, 25]. It has been demonstrated that differentially private analyses exist for a
variety of tasks including the approximation of numerical functions (by means
of adding carefully chosen random noise that conceals any single individual’s
contribution) [27, 9, 63, 43], non-numerical analyses [59], datamining [9, 63],
learning [9, 51], non-interactive sanitization [10, 29, 39], and statistical analy-
sis [26, 74].

7.1.1 Constructing Protocols that Preserve Differential Privacy

Combining these two lines of research – SFE and differential privacy – we
get a very natural paradigm for constructing protocols that preserve differen-
tial privacy, making use of the generality of SFE:

1. Decide on what to compute, e.g., a differentially private analysis f̂(·) that
approximates a desired analysis f(·). This can be done while abstracting
out all implementation issues, assuming the computation is performed
by a trusted party that only announces the outcome of the analysis.

2. Decide on how to compute, e.g., construct an SFE protocol for computing
f̂(x) either by using one of the generic transformations of the feasibility
results mentioned above, or by crafting an efficient protocol that utilizes
the properties of f̂(·).

This natural paradigm yields a conceptually simple recipe for constructing
distributed analyses preserving differential privacy, and, furthermore, allows a
valuable separation of our examinations of the what and how questions. How-
ever, comparing the privacy requirements of SFE protocols with differential
privacy suggests that this combination may result in sub-optimal protocols.
For example, differential privacy is only concerned with how the view of a
coalition changes when one (or only few) of the inputs are changed, whereas
SFE protocols are required to keep these views indistinguishable even when
significant changes occur, if these changes do not affect the function’s outcome.
Hence, it is interesting to learn whether there are advantages to a paradigm
where the analysis to be computed and the protocol for computing it are cho-
sen simultaneously.

The main distributed model we consider is of honest-but-curious parties
p1, . . . , pn that perform a computation over their private inputs x1, . . . , xn, while
maintaining differential privacy with respect to coalitions of size up to t (for
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formal definitions see Section 7.2 below). The model of honest-but-curious
parties has been examined thoroughly in cryptography, and was shown to en-
able SFE in a variety of settings [86, 46, 7, 19]. While it is probably most natural
to consider a setting where the players are computationally limited, we present
our results in an information theoretic setting, as this setting allows us to prove
lowerbounds on protocols, and hence demonstrate rigorously when construct-
ing differentially private protocols is better than using the natural paradigm.

The second model we consider is the local model. This model is also referred
to in the literature as randomized response and input perturbation. This model
was originally introduced by Warner [77] to encourage survey responders to
answer truthfully, and has been studied extensively since. Protocols executing
in the local model have a very simple communication structure, where each
party pi can only communicate with a designated honest-but-curious party
C, referred to as a curator. The communication can either be non-interactive,
where each party sends a single message to the curator, which replies with
the protocol’s outcome, or interactive, where several rounds of communication
may take place.

7.1.2 Our Results

We initiate an examination of the paradigm where an analysis and the pro-
tocol for computing it are chosen simultaneously. We begin with two examples
that present the potential benefits of using this paradigm: it can lead to simpler
protocols, and more importantly it can lead to more efficient protocols. For the
latter we consider the Binary Sum function,

SUM(x1, . . . , xn) =
n∑

i=1

xi for xi ∈ {0, 1}.

The major part of this work examines whether constructing non-SFE proto-
cols for computing an approximation f̂(·) to SUM(·) yields an efficiency gain1.
Ignoring the dependency on the privacy parameter, our first observation is
that for approximations with additive error ≈

√
n there is a gain – for a natu-

ral class of symmetric approximation functions (informally, functions where the
outcome does not depend on the order of inputs), it is possible to construct dif-
ferentially private protocols that are much more efficient than any SFE protocol
for a function in this class. Moreover, these differentially private protocols are
secure against coalitions of size up to t = n − 1, and need not rely on secure
channels.

The picture changes when we consider additive error smaller than
√
n. This

follows from a sequence of results:
1We only consider oblivious protocols where the communication pattern is independent of

input and randomness (see Section 7.2).
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1. We prove first that no such non-interactive protocols in the local model
exist. Furthermore, no local protocols with ℓ ≤

√
n rounds and additive

error
√
n/Õ(ℓ) exist.

2. We show that in particular, no local interactive protocol with o(
√

n/ log n)
rounds exists for computing SUM(·) within constant additive error (this
is in contrast to the centralized setup where SUM(·) can be computed
within O(1) additive error).

3. Finally, we prove that the bounds on local protocols imply that no dis-
tributed protocols exist that use nt/4 messages, and approximates SUM(·)
within additive error

√
n/Õ(ℓ) in ℓ rounds.

Considering the natural paradigm, i.e., computing a differentially-private ap-
proximation to SUM(·) using SFE, we get a protocol for approximating SUM(·)
with O(1) additive error, and sending O(nt) messages. Thus, for protocols
with error o(

√
n/ε) and small number of rounds, there is no gain in using the

paradigm of a simultaneous design of the function and its protocol.
Our results imply that differentially private protocols constructed under

computational hardness assumptions, yielding a computational version of dif-
ferential privacy (see Definition 7.2.2), are provably more efficient than proto-
cols that do not make use of computational hardness. For instance, the phase
transition we observe at θ(

√
n/ε) additive error does not hold in a computa-

tional setting. See Example 7.2.3 for details.

7.1.3 Techniques

We prove our lowerbound for the distributed model in a sequence of re-
ductions. We begin with a simple reduction from any differentially private
protocol for SUM to a gap version of the threshold function, denoted GAP-TR.
Henceforth, it is enough to prove our lowerbound for GAP-TR.

In the heart of our lowerbound for GAP-TR is a transformation from effi-
cient distributed protocols into local interactive protocols, showing that if there
are distributed differentially-private protocols for GAP-TR(·) in which half of
the parties interact with less than t + 1 parties, then there exist differentially-
private protocols for GAP-TR(·) in the local interactive model. This allows
us to prove our impossibility results in the local model, which is considerably
simpler to analyze.

In analyzing the local non-interactive model, we prove lowerbounds bor-
rowing from analyses in [23, 30]. The main technical difference is that our anal-
ysis is a lowerbound and hence should hold for general protocols, whereas the
work in [23, 30] was concerned with proving feasibility of privacy-preserving
computations (i.e., upperbounds), and hence they analyze of very specific pro-
tocols.
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To extend our lowerbounds from the local non-interactive to interactive
protocols, we decompose an ℓ-round interactive protocol to ℓ one-round pro-
tocols, analyze the ℓ protocols, and use composition to obtain the lowerbound.

7.1.4 Related Work

Secure function evaluation and private data analysis were first tied to-
gether in the Our Data, Ourselves (ODO) protocols [25]. The constructions
in [25] – distributed SFE protocols for generating shares of random noise used
in private data analyses – follow the natural paradigm discussed above (how-
ever, they avoid utilizing generic SFE feasibility results to gain on efficiency).
We note that a difference between the protocols in [25] and the discussion
herein is that ODO protocols are secure against malicious parties, in a compu-
tational setup, whereas we deal with honest-but-curious parties, and mostly in
an information theoretic setup. Following our work, computational differen-
tial privacy was considered in [60]; they present several definitions of compu-
tational differential privacy, study the relationships between these definitions,
and construct efficient 2-party computational differentially private protocols
for approximating the distance between two vectors. In this work, we supply
a definition of computationally (t, ϵ)-differentially private protocols which is
close to the definition of IND-CDP privacy in [60].

Lowerbounds on the local non-interactive model were previously presented
implicitly in [27, 72, 51], and explicitly in [23, 28]. The two latter works are
mainly concerned with what is called the global (or centralized) interactive
setup, but have also implications to approximation to SUM in the local non-
interactive model, namely, that it is impossible to approximate it within addi-
tive error c

√
n (for some constant c > 0), a slightly weaker result compared

to our lowerbound of c
√
n/ε for ε-differentially private local non-interactive

protocols. However, (to the best of our understanding) these implications
of [23, 28] do not imply the lowerbounds we get for local interactive proto-
cols and distributed protocols.

Chor and Kushilevitz [20] consider the problem of securely computing
modular sum when the inputs are distributed. They show that this task can
be done while sending roughly n(t+ 1)/2 messages. Furthermore, they prove
that this number of messages is optimal for a family of protocols that they call
oblivious. These are protocols where the communication pattern is fixed and
does not depend on the inputs or random inputs. In our work we extend their
lowerbound result and prove that with n(t+ 1)/4 messages no symmetric ap-
proximation for SUM with sub-linear additive error can be computed in an
oblivious protocol.
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7.1.5 Organization

The rest of the chapter is organized as follows: In Section 7.2 we define an
extension of differential privacy definition to differentially private protocols,
describe the local model of communication, and define the binary sum and
gap threshold functions. In Section 7.3, we present two motivating examples
for our new methodology of simultaneously solving how and what. In Sec-
tion 7.4 we prove lowerbounds on the error of differentially private protocols
for computing the binary sum and gap threshold functions in the local model,
and in Section 7.5 we extend these lowerbounds to the distributed model. Fi-
nally, in Section 7.6 we prove that an SFE protocol for computing a symmetric
approximation of the sum function with less than nt/4 messages has an error
of Ω(n) (compared to a non-SFE protocol that approximates the sum function
with O(n) messages and an error of Ω(

√
n)).

7.2 Differentially Private Protocols

Our privacy definition for distributed protocols (Definition 7.2.1 below) can
be viewed as a distributed variant of ε-differential privacy. Informally, a com-
putation is differentially private if any change in a single individual input may
only induce a small change in the distribution of its outcomes.

We consider a distributed setting, where n parties p1, . . . , pn hold private in-
puts x1, . . . , xn, respectively, and engage in a protocol Π in order to compute (or
approximate) a function f(·) of their joint inputs. Parties are honest-but-curious,
which means they follow the prescribed randomized protocol; however, as the
execution of the protocol terminates, parties can collide and try to infer infor-
mation about inputs of parties outside the coalition. The protocol Π is executed
in a synchronous environment with point-to-point secure (untappable) com-
munication channels, and is required to preserve privacy with respect to coali-
tions of size up to t. Following [20], we only consider a fixed-communication
protocol Π (also called an oblivious protocol) where every channel is either (i)
active in every run of Π (i.e., at least one bit is sent over the channel), or (ii)
never used2. Parties that are adjacent to at least t+1 active channels are called
popular, other parties are called lonely.

The main definition we present is an extension of Definition 6.2.1 to a dis-
tributed setting. Informally, we require that differential privacy is preserved
with respect to any coalition of size up to t.

2Our proofs also work in a relaxed setting where every channel is either (i) used in at least
a constant fraction of the runs of Π (where the probability is taken over the coins of Π), or (ii)
is never used.
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Notation. A vector x = (x1, . . . , xn) is an ordered sequence of n elements of
some domain D. Vectors x,x′ are neighboring if they differ on exactly one entry,
and are T -neighboring if they differ on a single entry whose index is not in
T ⊂ [n].

Definition 7.2.1 (Distributed differential privacy). Let Π be a protocol between n
(honest-but-curious) parties. For a set T ⊆ [n] and fixed inputs x = (x1, . . . , xn), let
ViewT (x1, . . . , xn) be the random variable containing the inputs of the parties in T
(i.e., {xi}i∈T ), the random inputs of the parties in T , and the messages that the parties
in T received during the execution of the protocol with private inputs x = (x1, . . . , xn)
(the randomness is taken over the random inputs of the parties).

We say that Π is (t, ε)-differentially private if for all T ⊂ [n], where |T | ≤ t, for
all T -neighboring x,x′, and for all possible sets VT of views of the parties in T :

Pr[ViewT (x) ∈ VT ] ≤ eε · Pr[ViewT (x
′) ∈ VT ], (7.1)

where the probability is taken over the random inputs of the parties in the protocol Π.

An equivalent requirement is that for all T ⊂ [n], where |T | ≤ t, for all T -
neighboring x,x′, and for all distinguishers D (i.e., functions, not necessarily
efficiently computable, from views to {0, 1}),

Pr[D(ViewT (x)) = 1] ≤ eε · Pr[D(ViewT (x
′)) = 1].

This requirement can be relaxed to only consider distinguishers that are com-
putationally bounded:

Definition 7.2.2 (Computational distributed differential privacy). We say that Π
is computationally (t, ε)-differentially private if for every probabilistic polynomial-
time algorithm D, and for every polynomial p(·), there exists k0 such that for all
k ≥ k0, for all T ⊂ [n], where |T | ≤ t, and for all T -neighboring inputs x,x′ ∈(
{0, 1}k

)n
:

Pr[D(ViewT (x)) = 1] ≤ eε · Pr[D(ViewT (x
′)) = 1] +

1

p(n · k)
,

where the probabilities are taken over the random inputs of the parties in protocol Π
and the randomness of D.

Example 7.2.3. We next describe a computationally (n/2, ε)-differentially private
protocol for computing SUM with O(log n/ϵ) additive error, O(n) messages, and con-
stant number of rounds. This protocol uses a homomorphic encryption scheme with
threshold decryption (that is, only the sets of all parties can decrypt messages). For
example, if we use ElGamal encryption, the distributed key generation and decryption
require one round in which each party sends one message. The protocol works in three
phases:



70 Phase Transition Threshold of Differentially Private Distributed Protocols

Key Generation. The parties generate public and private keys for the homomorphic
encryption scheme with threshold decryption.

Encryption. Each party pi chooses a random noisei (according to a distribution that
will be defined later), computes yi = xi + noisei, encrypts yi using the public
encryption key and sends the encryption to p1.

Decryption. Party p1 computes z, an encryption of y =
∑

i=1n yi (this is possible as
the encryption scheme is homomorphic). p1 sends z to each pi, which in return
sends a decryption message back to p1. Finally, p1 decrypts y from the decryption
messages and sends y to all parties.

One way to generate each party’s noise is for each party to sample from the Normal
distribution with mean zero and variance 6 log2 n/(nε2). Since the sum of normal
random variables is a normal random variable, y =

∑
i=1n xi + noise where noise is

sampled from a normal distribution with mean zero and variance 6 log2 n/ε2. Further-
more, even if a coalition of n/2 parties subtracts the noise that its parties added to y,
the variance of the remaining noise is 3 log2 n/ε2. Using the analysis of [25], the pro-
tocol is a computationally (n/2, ε)-differentially private protocol which with constant
probability has error O(log n/ϵ).

The above protocol is a computationally (n/2, ε)-differentially private protocol for
computing SUM with O(log n/ϵ) additive error, O(n) messages, and constant number
of rounds. In contrast, we prove that (n/2, ε)-differentially information-theoretically
private protocol for computing SUM with o(

√
n) additive error and constant number

of rounds must send Ω(n2) messages. Thus, our results shows that requiring only
computational differentially-privacy does result in more efficient protocols.

Using standard SFE feasibility results (in the computational setting), it is
possible now to prove that the natural paradigm presented in Section 7.1.1
yields protocols that adhere to Definition 7.2.2. Consider an ϵ-differentially
private data analysis f̂ and a computationally bounded distinguisher D, try-
ing distinguish between a computation of an SFE protocol computing f̂ with
neighboring inputs x and x′. Since, f̂ preserves differential privacy the distri-
butions on the outputs must be ε close, the same must hold for the random
variables describing the adversary’s view (up to some negligible function in
the length of the (concatenated) inputs). We get:

Lemma 7.2.4 (Informal). Let f̂ be ε-differentially private, and let Π be a t-secure
protocol computing f̂ , then Π is computationally (t, ε)-differentially private.

In the above lemma, the if the t-secure protocol Π computing f̂ has perfect
security, then Π is information-theoretically (t, ε)-differentially private.

Remark 7.2.5. We will only consider protocols computing a (randomized) function
f̂(·) resulting in all parties computing the same outcome of f̂(x). This can be achieved,
e.g., by having one party compute f̂(x) and send the outcome to all other parties.
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7.2.1 Basic Facts about Distributed Protocols

Throughout this chapter we use some basic facts that apply to all random-
ized distributed protocols. We start with a general notation.

Notation 7.2.6. Fix an n-party randomized protocol Π, assume that each pi holds an
input xi, and fix some communication transcript c. We define αc

i(xi) as the probability
that in each round pi with input xi sends messages according to c provided that in
previous rounds it sees messages according to c (that is get messages according to c
and sends messages according to c). The probability is taken over the random string of
party pi.

Let c be an ℓ-round transcript in which, without loss of generality, pi sends a
message at each round. We note that αc

i(xi) =
∏ℓ

k=1 βk, where βk is probability
that pi with input xi sends in round k the message according to c provided that
in previous rounds it sees messages according to c. This is verified simply by
fixing the inputs and the randomness of all other parties to be consistent with
c and considering the conditional probabilities.

The following lemma captures the intuition that the probability that a tran-
script c is exchanged in a given distributed protocol Π with input vector x =
(x1, . . . , xn) is the product of the probabilities that each party pi chooses a ran-
dom input ri such that ri and xi are consistent with c.

Lemma 7.2.7. Fix an n-party randomized protocol Π, assume that each pi holds an
input xi, and fix some communication transcript c. Then, the probability that c is
exchanged is

∏n
i=1 α

c
i (xi).

Proof. Since the random inputs of the parties are independently chosen, we
have that αc

i(xi) for all is are mutually independent, hence the lemma follows.

7.2.2 The Local Model

The local model (previously discussed in [27, 51]) is a simplified distributed
communication model where the parties communicate via a designated party
– a curator – denoted C (with no local input). We will consider two types
of differentially private local protocols. In non-interactive local protocols each
party pi applies an ε-differentially private algorithm Si on its private input xi

and randomness ri, and sends Si(xi, ri) to C that then performs an arbitrary
computation and publishes its result.

In interactive local protocols the protocol proceeds in rounds, where in each
round j the curator sends to each party pi a “query” message qi,j and party pi
responds with the jth “answer” Ai(xi, qi,1, . . . , qi,j, ri); the answer is a function
of the party’s input xi, its random input ri, and the first j queries. I.e., each
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round consists of two communication phases: first, the query messages are
sent by the curator, then, each party sends the appropriate response message.
We note that in the honest-but-curious setting we can assume, without loss of
generality, that the curator is deterministic, as randomness for the curator may
be provided by parties in their first message.

Definition 7.2.8 (Differential privacy in the local model). We say that a protocol
Π in the local model is ε-differentially private if the curator’s view preserves ε-
differential privacy. Formally, for all neighboring x,x′ and for every possible set VC of
views of the curator:

Pr[ViewC(x) ∈ VC ] ≤ eε · Pr[ViewC(x
′) ∈ VC ],

where ViewC(x) is the random variable containing the messages that C receives dur-
ing the execution of the protocol with private inputs x = (x1, . . . , xn) and the proba-
bility is taken over the random inputs of the parties.

We note that ViewC(x) is defined in accordance with Definition 7.2.1 (with
some abuse of notation, as C is not a set). However, since C has no initial
input and since C is assumed to be deterministic, ViewC(x) only contains the
messages that C receives during the execution of the protocol with inputs x =
(x1, . . . , xn).

The differential privacy requirement in the local model may be equiva-
lently phrased as a requirement to preserve the privacy of each party indepen-
dently of other parties. We next give a definition in this spirit by considering
the probabilities that a party pi replies in a certain way to a given sequence of
queries with xi = 0 and with xi = 1. Any communication transcript c in an
execution of the protocol defines a transcript ci, where ci = qi,1, ai,1, . . . , qi,ℓ, ai,ℓ
is the restriction of c to the messages transferred between party pi and the cu-
rator (recall that in the local model every party communicates solely with the
curator). Thus, we can use αci

i (xi) (see Notation 7.2.6) to denote the probabil-
ity that pi with private input xi replies by ai,1, . . . , ai,ℓ provided the curator has
sent queries qi,1, . . . , qi,ℓ. Using this notation, we formally present the alterna-
tive definition of privacy in the local model.

Definition 7.2.9 (Differential privacy in the local model – Individual privacy
requirement). We say that a protocol Π in the local model is ε-differentially pri-
vate if the curator’s view preserves ε-differential privacy with respect to each party
separately. Formally, for every i ∈ [n] and for any possible communication transcript
ci = qi,1, ai,1, . . . , qi,ℓ, ai,ℓ between party pi and the curator (i.e., there exist inputs
x′
1, . . . , x

′
n and random inputs r′1, . . . , r′n consistent with ci), and for every xi, yi ∈ D

it holds that αci
i (xi) ≤ eε · αci

i (yi), where the probabilities are taken over the random
input of pi.

We next show the equivalence of the two privacy definitions of local proto-
cols given above.
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Claim 7.2.10. The privacy requirements in Definition 7.2.8 and in Definition 7.2.9
are equivalent.

Proof. For a communication transcript ci = qi,1, ai,1, . . . , qi,j, ai,j between party
pi and the curator, denote by αci

i (xi) the probability that pi is consistent with
ci with input xi (namely, the probability that pi with input xi replies with
messages ai,1, . . . , ai,j provided that query messages sent by the curator were
qi,1, . . . , qi,j).

First assume that Π is ε-differentially private according to Definition 7.2.8.
Let ci be a communication transcript exchanged between pi and the curator.
We are interested in the maximum ratio between the probabilities αck

k (xk) and
αck
k (x′

k) for any pk, any pair of inputs xk, x
′
k, and any such transcript ck. Let c

be any full communication transcript of all parties, such that ck is the part of c
which is exchanged between the curator and pk. Denote ci, the part of c which
is exchanged between the curator and each party pi for i ̸= k. Fix any set of
inputs (x1, . . . , xk−1, xk+1, . . . , xn) for all parties other than pk, by Lemma 7.2.7
we have that

αck
k (xk)

αck
k (x′

k)
=

αck
k (xk) ·

∏
i ̸=k α

ci
i (xi)

αck
k (x′

k) ·
∏

i ̸=k α
ci
i (xi)

=
αc
k(xk) ·

∏
i̸=k α

c
i(xi)

αc
k(x

′
k) ·
∏

i̸=k α
c
i(xi)

≤ eε.

The last inequality holds by Definition 7.2.8.
For the other direction, assume that Definition 7.2.9 holds, i.e., that for any

party pi and for any possible communication transcript ci = qi,1, ai,1, . . . , qi,j, ai,j

between party pi and the curator, it holds that α
ck
k (xk)

α
ck
k (x′

k)
≤ eε. Let x,x′ be some

pair of neighboring inputs such that xk ̸= x′
k, and xi = x′

i for all i ̸= k. For
any possible view v of the curator, denote by c the full communication tran-
script explaining v. Denote by ci the part of c which is exchanged between the
curator and each party pi, specifically, ck is the part of c which is exchanged
between the curator and each party pk. Hence, by Lemma 7.2.7,

Pr[ViewC(x) = v]

Pr[ViewC(x′) = v]
=

∏n
i=1 α

c
i(xi)∏n

i=1 α
c
i(x

′
i)

=
αck
k (xk) ·

∏
i̸=k α

ci
i (xi)

αck
k (x′

k) ·
∏

i̸=k α
ci
i (xi)

=
αck
k (xk)

αck
k (x′

k)
≤ eε.

7.2.3 Approximation

We will construct protocols whose outcome approximates a function f :
Dn → R by a probabilistic function, according to the following definition:

Definition 7.2.11 (Approximation). A randomized function f̂ : Dn → R is an
additive (γ, τ)-approximation for a (deterministic) function f if

Pr
[
|f(x)− f̂(x)| > τ(n)

]
≤ γ(n)
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for all x ∈ Dn. The probability is over the randomness of f̂ .

For example, by the properties of the Laplace distribution, Equation (6.4)
yields an additive (e−k, k · GSf/ε)-approximation to f , for every k > 0.

7.2.4 The Binary Sum and Gap Threshold Functions

We consider the binary sum function defined to be SUMn(x1, . . . , xn) =∑n
i=1 xi for xi ∈ {0, 1}. When n is clear from the context, we omit the sub-

script n. We next define a gap version of the threshold function:

Definition 7.2.12 (Gap Threshold). We define GAP-TR by cases on SUM:

If SUMn(x1, . . . , xn) ≤ κ then GAP-TRκ,τ (x1, . . . , xn) = 0.

If SUMn(x1, . . . , xn) ≥ κ+ τ then GAP-TRκ,τ (x1, . . . , xn) = 1.

Note that there are no requirements on the output of GAP-TRκ,τ when κ <

SUMn(x1, . . . , xn) < κ + τ . Clearly, a (γ, τ/2)-approximation f̂ to SUM can be
translated into an (γ, 0)-approximation ĝ to GAP-TRκ,τ , by adding a simple
calculation step, that is, given an approximation y = f̂(x) for SUMn(x), set
GAP-TRκ,τ (x) to be 0 if y ≤ κ+τ/2 and 1 otherwise. Thus, the following claim
is straightforward in both the distributed and the local models.

Claim 7.2.13. If there exists an ℓ-round, (t, ε)-differentially private (respectively, ε-
differentially private in the local model) protocol that (γ, τ/2)-approximates SUMn

sending ρ messages, then for every κ there exists an ℓ-round, (t, ε)-differentially pri-
vate (respectively, ε-differentially private in the local model) protocol that correctly
computes GAP-TRκ,τ with probability at least 1− γ, sending at most ρ messages.

Specifically, non-existence of (t, ε)-differentially private protocols for com-
puting GAP-TR0,τ correctly with n(t+ 1)/4 messages implies that there exists
no (t, ε)-differentially private protocols for computing SUMn with n(t + 1)/4
messages and additive error magnitude τ/2. The next claim asserts that the
same non-existence also implies that, for any 0 ≤ κ ≤ n − τ , there exists no
(t, ε)-differentially private protocol for computing GAP-TRκ,τ correctly with
n(t + 1)/8 messages. Again, it applies to both the distributed and the local
models.

Claim 7.2.14. If for some 0 ≤ κ ≤ n− τ there exists an ℓ-round, (t, ε)-differentially
private (respectively, ε-differentially private in the local model) n-party protocol that
correctly computes GAP-TRκ,τ with probability at least γ sending at most ρ messages,
then there exists an ℓ-round, (t/2, ε)-differentially private (respectively, ε-differentially
private in the local model) n/2-party protocol that correctly computes GAP-TR0,τ

with probability at least γ sending at most ρ messages.
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Proof. First assume κ ≤ n/2. Given an n-party protocol Π that correctly com-
putes GAP-TRκ,τ , define an n/2-party protocol Π′ for computing GAP-TR0,τ

by simulating parties pn
2
+1, . . . , pn where xn

2
+1, . . . , xn

2
+κ are set with value 1

and xn
2
+κ+1, . . . , xn are set to 0. In the local model, a designated party, say p1,

can simulate these n/2 parties. In the distributed model, however, we let each
party pi simulate party pi+n/2 and, thus, the resulting protocol is only (t/2, ε)-
differentially private.

To verify that the resulting protocol is indeed (t/2, ε)-differentially private,
observe that any view v of a coalition T ′ of size t′ ≤ t/2 in some execution of the
resulting protocol is exactly the view of the coalition T of size 2t′ ≤ t, implied
by T ′ (for pi ∈ T ′ we have pi, pi+n/2 ∈ T ), in the appropriate computation of the
original protocol. Moreover, any T ′-neighboring x,x′ define T -neighboring
xy,x′y (where y = 1κ0

n
2
−κ), such that Pr[ViewT (xy) = v] = Pr[ViewT ′(x) = v]

and Pr[ViewT (x
′y) = v] = Pr[ViewT ′(x′) = v]. Thus, by the privacy of the

original protocol, the resulting protocol is (t/2, ε)-differentially private.
Otherwise, if κ > n/2, we can transform the original protocol to one that

correctly computes GAP-TRn−κ−τ,τ , by flipping all input bits before engaging
in the execution, running the original protocol, and finally flipping the result
of the computation.

7.3 Motivating Examples

We begin with two examples manifesting benefits of choosing an analy-
sis together with a differentially private protocol for computing it. In the
first example, this paradigm yields more efficient protocols than the natural
paradigm; in the second example, it yields simpler protocols.

7.3.1 Binary Sum –
√
n Additive Error

We begin with a simple protocol for approximating SUMn within O(
√
n/ε)-

additive approximation. This protocol is well known as Randomized Response [77]
(randomized response protocols under some related definition of privacy were
also recently studied in [38]). We describe the protocol in the (non-interactive)
local model, and it can be easily translated to a two round (and 2n messages)
(n, ε)-differentially private distributed protocol by letting some arbitrarily des-
ignated party (say p1) play the role of C.

Let flipα(x) be a randomized bit flipping operator returning x with proba-
bility 0.5 + α and 1 − x otherwise, where α = ε

4+2ε
. The protocol proceeds as

follows:

1. Each party pi with private input xi ∈ {0, 1} sends zi = flipα(xi) to C.

2. C locally computes and publishes k =
∑n

i=1 zi.
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3. Each party locally computes f̂ = (k − (0.5− α)n)/2α.

A total of O(n) messages and O(n log n) bits of communication are exchanged.
To see that the protocol satisfies the privacy requirement of Definition 7.2.9,
note that

Pr[flipα(1) = 1]

Pr[flipα(0) = 1]
=

0.5 + α

0.5− α
= 1 + ε ≤ eε,

and similarly Pr[flipα(0) = 0]/Pr[flipα(1) = 0] ≤ eε. To see that the protocol
approximates the sum function, note that

E[zi] = E[flipα(xi)] =

{
0.5 + α if xi = 1
0.5− α if xi = 0.

Thus,

E[k] = (0.5+α) ·SUM(x)+ (0.5−α) · (n−SUM(x)) = 2α ·SUM(x)+ (0.5−α)n,

and hence,

E[f̂ ] = E
[
k − (0.5− α)n

2α

]
= SUM(x).

we apply the following Chernoff bound: Given n zero-one random variables
X1, . . . , Xn and 0 < t < 1, Pr [

∑n
i=1Xi ≤ (1− t)µ] < exp

(
− t2µ

2

)
, where µ =∑n

i=1 E[Xi]. Hence, we get that f̂ is an additive (O(1), O(
√
n/ε))-approximation

to SUM(·), that is, with constant probability, the error is O(
√
n/ε).

Remark 7.3.1. We next sketch an alternative ε-differentially private protocol that
(O(1),

√
n/ε)-approximates SUMn:

1. Each party pi with private input xi ∈ {0, 1} samples yi ∼ Lap(1/ε) and sends
zi = xi + yi to C.

2. C locally computes f̂ =
∑n

i=1 zi and publishes the result.

The privacy of the protocol follows from the arguments in Section 6.3.

Remark 7.3.2. The above constructions result in symmetric approximations to SUM(·)
(i.e., the output distribution depends solely on SUM(·) and not on the specific assign-
ment). While these differentially private protocols use O(n) messages, it can be shown
that for such symmetric functions that no efficient SFE protocols for such functions
exist (see Section 7.6 for more details).
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7.3.2 Distance from a Long Subsequence of 0’s

Our second function measures how many bits in a sequence x of n bits
should be set to zero to get an all-zero consecutive subsequence of length nα.
In other words, the function should return the minimum weight over all sub-
strings of x of length nα bits:

DISTα(x) = min
i

(
i+nα−1∑

j=i

xj

)
.

For t ≤ n/2 we present a (t, ε, δ)-differentially private protocol3 approximating
DISTα(x) with additive error Õ(nα/3/ε).

In our protocol, we treat the n-bit string x (where xi is held by party pi) as a
sequence of n1−α/3 disjoint intervals I1, . . . , In1−α/3 , each nα/3 bit long. Let ik be
the index of the first bit in the interval Ik, and observe that minik(

∑ik+nα−1
j=ik

xj)

is an nα/3 additive approximation of DISTα. The protocol for computing an
approximation f̂ to DISTα is sketched below.

1. Every party pi generates independent random variables Y 1
i , . . . Y

n1−α/3

i ,
each distributed according to the normal distribution N(µ = 0, σ2 =

2R/n) where R =
2 log ( 2

δ
)

ε2
. The random variable Y k

i is the noise con-
tributed by pi to the perturbed sum over the interval Ik.

Party pi then shares xi and Y 1
i , . . . Y

n1−α/3

i between the parties p1, . . . , pt+1

using an additive (t+ 1)-out-of-(t+ 1) secret sharing scheme4.

2. Every party pi, where 1 ≤ i ≤ t + 1, sums, for every interval Ik of length
nα/3, the shares of xi’s it got from the parties in the interval together with
the shares of Y k

i ’s it got from all parties, and sends this sum to p1.

3. For every interval Ik, party p1 computes the sum of the t + 1 sums it got
for the interval. By the additivity of the secret sharing scheme, this sum
is equal to

Sk =

ik+nα/3−1∑
j=ik

xj +
n∑

ℓ=1

Y k
ℓ =

ik+nα/3−1∑
j=ik

xj

+ Zk,

where Zk =
∑n

ℓ=1 Y
k
ℓ (notice that Zk ∼ N(µ = 0, σ2 = 2R)).

3(ε, δ)-differential privacy is a generalization, defined in [25], of ε-differential privacy
where it is only required that Pr[f̂(x) ∈ V] ≤ eε · Pr[f̂(x′) ∈ V] + δ .

4Shared secrets are taken from a large enough finite domain by rounding the numbers log n
digits after the point. This yields no breach in privacy and adds a small magnitude of error.



78 Phase Transition Threshold of Differentially Private Distributed Protocols

4. p1 computes mink

∑k+n2α/3

j=k Sk and sends this output to all parties.

We take Zk to be with variance 2R (rather than R) to ensure that the sum of
the noise generated by n − t ≥ n/2 of the parties is enough to conceal the xi’s
in interval Ik. Using the analysis of [25], this protocol is a (t, ε, δ)-differentially
private protocol when 2t < n. Furthermore, we next give a sketch proof that
with high probability the additive error is Õ(nα/3/ε). It suffices to consider the
probability of error with respect to the nα/3 additive approximation of DISTα,
implied by minik(

∑ik+nα−1
j=ik

xj). Denote by βik , the total noise added to the n2α/3

sums of the intervals, starting at Ik, that is, βik =
∑k+n2α/3

j=k Zk. We consider
the probability that for some k it holds that βik < −γ, where γ = dnα/3

√
2R

is a bound on the approximation’s error. Given k, this probability at most
exp(− d2

2
)

d
√
2π

since the noise we add to this summation has standard deviation σ =

nα/3
√
2R. Hence, the probability that at least for one summation we add noise

of magnitude −γ is at most exp(− d2

2
)

d
√
2π

n1−α
3 =

exp (
2 lnn(1−α

3 )−d2

2
)

d
√
2π

.
To conclude, we showed a simple 3 round protocol for DISTα. This proto-

col demonstrates two advantages of the paradigm of choosing what and how
together. First, we choose an approximation of DISTα (i.e., we compute the
minimum of subsequences starting at a beginning of an interval). This ap-
proximation reduces the communication in the protocol. Second, we leak in-
formation beyond the output of the protocol, as p1 learns the sums Sk’s5.

7.4 Lowerbounds on the Error of Binary Sum and
GAP-TR in the Local Model

In this section we consider protocols in the local model computing the bi-
nary sum, and prove that in any such ℓ-round, ε-differentially private protocol
the additive error cannot be less than

√
n/Õ(ℓ). To this end, we consider pro-

tocols in the local model for computing the GAP-TR function, as defined in
Definition 7.2.12. Specifically, we prove that such a protocol in the local model
can only compute GAP-TR0,τ for τ = Ω(

√
n/Õ(ℓ)) and obtain the impossibility

result for SUM using Claim 7.2.13.
Towards this goal, we show that there are two inputs for which the curator

sees similar distributions on the messages, thus, has to return similar answers.
However, one input contains Ω(

√
n) ones and the other is the all-zero input,

and the algorithm errs on at least one of the inputs. We will prove the existence
of such input with Ω(

√
n) ones, by considering a distribution A on inputs and

later proving that such input taken from the distribution A exists.
5One can use the techniques of [22] to avoid leaking these sums while maintaining a con-

stant number of rounds, however the resulting protocol is less efficient.
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Notation 7.4.1. Let α ∆
= 1

ε
√
dn

for d to be determined later (d is a function of ℓ – the
number of rounds in the protocol). Define the distribution A on inputs from {0, 1}n
as follows: a vector x = (x1, . . . , xn) is chosen, where xi = 1 with probability α and
xi = 0 with probability (1− α) (each input xi is chosen independently).

From here on, we use X to identify the random variable representing the
input and Xi for its ith coordinate. When considering the random variable
over A, we use the notation PrA[·]. For a set of views of the curator D, we use
the notation PrA[D] to denote the probability of the event that the view of the
curator falls in D when X is generated according to the probability distribution
A.

Recall that our goal is to prove lowerbounds on τ for differentially-private
protocols computing the function GAP-TR0,τ in the local model. Notice that
we take κ = 0, namely, we want to prove that the curator cannot distinguish
between the all-zero input and inputs of weight at least τ (for small values of
τ ). Towards this goal, in Section 7.4.1, we analyze properties of non-interactive
differentially private protocols in the local model, and show that a curator,
trying to distinguish between input chosen according to distribution A and
the all zero input, fails with constant probability. In Section 7.4.2 we generalize
this analysis to interactive protocols in the local model. In Section 7.4.3, we
complete the proof of the lowerbound on the gap-threshold function in the
local model.

7.4.1 Differentially Private Protocols in the Non-Interactive Lo-
cal Model

We consider protocols in the non-interactive local model where each party
holds an input xi ∈ {0, 1} and independently applies an algorithm Si (also
called a sanitizer) before sending the sanitized result ci to the curator. More
formally, we want to prove that if each Si is 2ε-differentially private for some
0 < ε ≤ 16, then the curator errs with constant probability when trying to dis-
tinguish between an input chosen according to distribution A and the input
vector 0n. We remark that here we consider protocols that are 2ε-differentially
private as this is required in the analysis of Section 7.4.2, i.e., for proving lower-
bounds for interactive protocols.

We denote for every possible view c = (c1, . . . , cn) of the curator C.

r(c)
∆
=

PrA

[
ViewC(X) = c

]
Pr
[
ViewC(0) = c

] and ri(ci)
∆
=

PrA

[
Si(Xi) = ci

]
Pr
[
Si(0) = ci

] . (7.2)

6We can replace the condition ε ≤ 1 by a condition that ε ≤ ε0 for any constant ε0 ≥ 1. This
would change some of the constants in the calculations below.
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Note that in a non-interactive protocol, ViewC(x) is the random variable
which is a concatenation of the messages C receives from p1, . . . , pn with pri-
vate inputs x = (x1, . . . , xn), i.e., (S1(x1), . . . , Sn(xn)). Thus, r(c) =

∏n
i=1 ri(ci).

We next show that for views of the curator c that are likely with inputs selected
according to A, the ratio r(c) is bounded by a constant. I.e., with constant prob-
ability (over the choice of c), we get a constant ratio between the probabilities
of c being the view of the curator when the protocol is executed with x, selected
according to A, and when the protocol is executed with 0.

Define a random variable C = (C1, . . . , Cn) where Ci = Si(Xi) and Xi is
chosen according to the distribution A. In Lemma 7.4.4 we bound PrA[r(C) >
δ] using the Hoeffding bound. Towards proving this bound, we define the
random variables Vi

∆
= ln ri(Ci). For every η > 0, we have that

Pr
A
[r(C) > η] = Pr

A

[
n∏

i=1

ri(Ci) > η

]
= Pr

A

[
n∑

i=1

Vi > ln η

]
, (7.3)

where the first equality holds since the Xis are chosen independently. To apply
the Hoeffding bound, we need to show that each variable Vi is bounded, and to
compute the expectation of Vi. Both tasks are achieved using the 2ε-differential
privacy of the sanitizers, that is,

e−2ε ≤ Pr[Si(1) = ci]

Pr[Si(0) = ci]
≤ e2ε. (7.4)

Lemma 7.4.2. For every i and for any 0 < ε ≤ 1, with probability 1,

1. 1− 2αε ≤ ri(ci) ≤ 1 + 4αε

2. −4αε ≤ Vi ≤ 4αε.

Recall that α = 1
ε
√
dn

(see Notation 7.4.1).

Proof. For every i and every value ci,

ri(ci) =
PrA[Si(Xi) = ci]

Pr[Si(0) = ci]

=
αPr[Si(1) = ci] + (1− α) Pr[Si(0) = ci]

Pr[Si(0) = ci]

= 1 + α
Pr[Si(1) = ci]− Pr[Si(0) = ci]

Pr[Si(0) = ci]
.

Using Pr[Si(1) = ci] ≤ e2ε Pr[Si(0) = ci] we get, on one hand, that

ri(ci) ≤ 1 + α
Pr[Si(0) = ci]e

2ε − Pr[Si(0) = ci]

Pr[Si(0) = ci]
= 1 + α(e2ε − 1) ≤ 1 + 4αε,
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since e2x < 1+4x for every 0 < x ≤ 1. Thus, Vi = ln ri(Ci) ≤ ln(1+4αε) ≤ 4αε,
since ln(1 + x) ≤ x for every 0 ≤ x ≤ 1 (recalling that α = 1

ε
√
dn

). Using the fact
that e−2ε Pr[Si(0) = ci] ≤ Pr[Si(1) = ci] we get, on the other hand, that

ri(ci) ≥ 1 + α
Pr[Si(0) = ci]e

−2ε − Pr[Si(0) = ci]

Pr[Si(0) = ci]
= 1 + α(e−2ε − 1) ≥ 1− 2αε,

since 1 − e−2x < 2x for every 0 < x ≤ 1. Thus, Vi = ln ri(Ci) ≥ ln(1 − 2αε) ≥
−4αε, since ln(1− x) ≥ −2x for every 0 ≤ x ≤ 0.5.

Lemma 7.4.3. For every i and for any 0 < ε ≤ 1, E[Vi] ≤ 32α2ε2.

Proof. In this proof we assume that the output of Si is a countable set. Denote
Bb

∆
= {ci : ri(ci) = 1 + b} for every −2αε ≤ b ≤ 4αε (by Lemma 7.4.2, these

are the only values possible for b). Note that by the definition of ri, for every
ci ∈ Bb

Pr
A
[Si(Xi) = ci]/Pr[Si(0) = ci] = 1 + b.

Thus, Pr[Si(0) ∈ Bb] = PrA[Si(Xi)∈Bb]
1+b

≤ (1 − b + 2b2) PrA[Si(Xi) ∈ Bb]. Let
β = 2αε. We next bound E[Vi].

E[Vi] = EA[ln r(Ci)] =
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb] ln(1 + b)

≤
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb]b (since ln(1 + b) ≤ b)

=
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb]−

∑
−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb](1− b+ 2b2)

+
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb](2b

2)

≤
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb]−

∑
−β≤b≤2β

Pr[Si(0) ∈ Bb]

+
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb](2b

2)

≤ 1− 1 + 8β2
∑

−β≤b≤2β

Pr
A
[Si(Xi) ∈ Bb] = 8β2 = 32α2ε2.

By Lemma 7.4.3, E[
∑n

i=1 Vi] =
∑n

i=1 E[Vi] ≤ 32α2ε2n = 32/d. We next prove
Lemma 7.4.4 which shows that

∑n
i=1 Vi is concentrated around this value.

Lemma 7.4.4. PrA[r(C) > exp (ν/d)] < exp (−(ν − 32)2/32d) for every ν > 32.
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Proof. We apply the Hoeffding bound: Let V1, . . . , Vn be independent random
variables such that Vi ∈ [a, b]. Then, Pr [

∑n
i=1 Vi − µ ≥ t] ≤ exp

(
− 2 t2

n(b−a)2

)
for

every t > 0 (where µ =
∑n

i=1 E[Vi]).
By (7.3), Lemma 7.4.2, Lemma 7.4.3, and by the notation α = 1

ε
√
dn

:

Pr
A
[r(C) > exp (ν/d)] = Pr

A

[
n∑

i=1

Vi >
ν

d

]

= Pr
A

[
n∑

i=1

Vi −
n∑

i=1

EVi >
ν

d
−

n∑
i=1

EVi

]

≤ Pr
A

[
n∑

i=1

Vi −
n∑

i=1

EVi >
ν

d
− n · 32α2ε2

]

≤ exp

(
−
2 (ν

d
− n · 32α2ε2)2

64nα2 ε2

)
= exp

(
−(ν − 32)2/32d

)
.

The following corollary is a rephrasing of Lemma 7.4.4 that follows from
the definition of r in (7.2).

Corollary 7.4.5. Let Π be a 2ε-private, non-interactive, local protocol, for 0 < ε ≤ 1.
Assume we execute Π with input x, sampled according to distribution A and denote
the view of the curator in that execution by c. Then, for every ν > 32 with probability
at least 1 − exp (−(ν − 32)2/32d), over the choice of x and the random inputs of the
parties,

Pr
A
[ViewC(Z) = c] ≤ exp (ν/d) Pr[ViewC(0) = c] ,

where in the left hand side the probability is taken over the choice of Z according to
the distribution A and the randomness of the sanitizers and in the right hand side the
probability is taken over the randomness of the sanitizers.

7.4.2 Differentially Private Protocols in the Interactive Local
Model

In this section we generalize Corollary 7.4.5 to interactive local protocols
where each party holds an input xi ∈ {0, 1} and communicates with the cura-
tor in rounds. Towards this goal, we decompose an ℓ-round ε-differentially pri-
vate protocol into ℓ protocols in the non-interactive local model, and prove that
each protocol is 2ε-differentially private. Thus, we can apply Corollary 7.4.5 to
each protocol, and then apply a composition lemma. Intuitively, we show that
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an ℓ-round protocol Π in the local model can be viewed as a composition of
ℓ protocols, for each of which the curator cannot always distinguish between
the case that inputs are all zeros and the case that inputs are sampled accord-
ing to distribution A. We view the original protocol as a protocol between the
curator and a single party, simulating all n parties. In this protocol the cu-
rator’s goal is to determine if inputs are all zero or sampled according to A.
We then apply the following composition lemma to show that the curator’s
success probability does not increase by too much as ℓ grows.

A Composition Lemma

We consider interactive protocols, where a (deterministic) curator C sends
adaptive queries to a single party p holding a private input x ∈ {0, 1} in a
similar setup to that of the local model (only we make no requirement for
ε-differential privacy), i.e., for 0 ≤ i ≤ ℓ, in the first phase of round i the cu-
rator sends p a message qi = C(i,V1, . . . ,Vi−1) computed over the transcript
of messages V1, . . . ,Vi−1 previously received from p. We denote by Ai the ran-
domized algorithm that is defined by the message qi; in the second phase of
round i party p computes Vi = Ai(x) (using fresh random coins for each Ai)
and sends Vi to C.

Definition 7.4.6. We say that a possible outcome V is ε-good for algorithm A if
Pr[A(1) = V ] ≤ eε Pr[A(0) = V ], where the probabilities are taken over the random-
ness of algorithm A. An algorithm A is (ε, δ)-good if Pr[A(1) is ε-good for A] ≥ 1−δ,
where the probability is taken over the randomness of A.

Let Π be a protocol, as defined above, in which for any transcript of mes-
sages V1, . . . ,Vi−1, sent by p in previous rounds, C replies with a query qi,
defining an (ε, δ)-good algorithm Ai. Define a randomized algorithm Â that
simulates the interaction between p and C, i.e., given input x ∈ {0, 1} it out-
puts a transcript (A1,V1, A2,V2, . . . , Aℓ,Vℓ) sampled according to Π(x).

Lemma 7.4.7. Â is (ℓε, 1− (1− δ)ℓ)-good.

Proof. With probability at least (1− δ)ℓ, the result of Â(1) is a transcript

V̂ = (A1,V1, A2,V2, . . . , Aℓ,Vℓ)

such that Vi is ε-good for Ai for all i ≤ ℓ. It suffices, hence, to prove that
when that happens the transcript V̂ is ℓε-good for Â, and indeed: Pr[Â(1) =

(A1,V1, A2,V2, . . . , Aℓ,Vℓ)] =
∏ℓ

i=1 Pr[Ai(1) = Vi] ≤
∏ℓ

i=1 e
ε · Pr[Ai(0) = Vi] =

eℓε · Pr[Â(0) = (A1,V1, A2,V2, . . . , Aℓ,Vℓ)] .
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Using the composition lemma

Lemma 7.4.8. Let Π be an ℓ-round, local, ε-differentially private protocol. Suppose
we execute Π with an input vector x, sampled according to distribution A, and set c to
be the view of the curator C in that execution. Then, for every ν > 32, with probability
at least 1− ℓ exp (−(ν − 32)2/32d), over the choice of x and the random inputs of the
parties,

Pr
A
[ViewC(Z) = c] ≤ exp (ℓν/d) Pr[ViewC(0) = c] ,

where in the left side the probability is taken over the choice of Z according to the dis-
tribution A and the randomness of the sanitizers and in the right side the probability
is taken over the randomness of the sanitizers.
Proof. Fix an ℓ-round, ε-differentially private, local protocol P . Recall that in
the interactive local model, a protocol is composed of ℓ-rounds where in each
round the curator sends a query to each party and the party sends an answer.

Our first goal is to make the parties stateless. Fix a party pi. First, we
assume that in interaction j the curator sends all queries and answers q1, a1,
. . . , aj−1, qj it sent and received from pi in previous rounds7. Second, we as-
sume that party pi chooses a fresh random string in each round, that is, in
round j, party pi chooses with uniform distribution a random string that is
consistent with the queries and answers it got in the previous rounds (since
we assume that the parties are unbounded, such choice is possible). Party pi
uses this random string to answer the jth query. In other words, we can con-
sider pi as applying an algorithm Aj to compute the jth answer; this algorithm
depends on the previous queries and answers and uses an independent ran-
dom string rj .

We next claim that Aj is 2ε-differentially private. That is, we claim that
the probability that aj is generated given the previous queries and answers is
roughly the same when pi holds the bit 0 and when pi holds the bit 1. For a tran-
script c of the first j rounds between pi and the curator C and for xi ∈ {0, 1},
we denote by Rxi

c the set of all random strings r, such that pi with private
input xi and random input r sends at each round messages according to c,
provided it received all messages according to c in previous rounds. Recall
that Pr[rj ∈ Rxi

c ] is denoted αc
i(xi). Let cj = q1, a1, . . . , qj−1, aj−1, qj, aj be mes-

sages sent in the first j rounds and let c′j = q1, a1, . . . , qj−1, aj−1, qj be the pre-
fix of cj without the jth round answer message aj (that is cj = c′j, aj). Note
that since rj must be consistent with the c′j , it holds for every xi ∈ {0, 1} that
Pr[Aj(x1) = aj] = Pr[rj ∈ Rx1

cj
|rj ∈ Rx1

c′j
]. We therefore need to show that

e−2ε ≤ Pr[Aj(1) = aj]

Pr[Aj(0) = aj]
=

Pr[rj ∈ R1
cj
|rj ∈ R1

c′j
]

Pr[rj ∈ R0
cj
|rj ∈ R0

c′j
]
≤ e2ε, (7.5)

7To simplify notation, we omit the subscript i from the queries and answers.
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To show that, we use the following two facts, which follow from Definition 7.2.9:

e−ε ≤ α
cj
i (1)

α
cj
i (0)

=
Pr[rj ∈ R1

cj
]

Pr[rj ∈ R0
cj
]
≤ eε, (7.6)

and

e−ε ≤ α
c′j
i (1)

α
c′j
i (0)

=
Pr[rj ∈ R1

c′j
]

Pr[rj ∈ R0
c′j
]
≤ eε. (7.7)

Hence, we have

r
∆
=

Pr[Aj(1) = aj]

Pr[Aj(0) = aj]
=

Pr[rj ∈ R1
cj
∧ rj ∈ R1

c′j
]

Pr[rj ∈ R1
c′j
]

·
Pr[rj ∈ R0

c′j
]

Pr[rj ∈ R0
cj
∧ rj ∈ R0

c′j
]

=
Pr[rj ∈ R1

cj
]

Pr[rj ∈ R1
c′j
]
·
Pr[rj ∈ R0

c′j
]

Pr[rj ∈ R0
cj
]
=

α
cj
i (1)

α
cj
i (0)

· α
c′j
i (0)

α
c′j
i (1)

.

By using the right inequality in (7.6) and the left inequality in (7.7), we get
that r ≤ e2ε and similarly, by using the left inequality in (7.6) and the right
inequality in (7.7), we get that r ≥ e−2ε. Thus, the answers of the n parties in
round j are 2ε-private, and we can apply Corollary 7.4.5 to the concatenation
of the n answers.

We now use the above protocol to construct a protocol P1 between a single
party, holding a one bit input x and a curator. Throughout the execution of the
protocol the party simulates all n parties as specified by the original protocol P
(i.e., sends messages to the curator with the same distribution as the n parties
send them). If the bit of the party in P1 is 1 it chooses the n input bits of the
n parties in P according to distribution A. If the bit of the party in P1 is 0
it chooses the n input bits of the n parties in P to be the all-zero vector. By
Corollary 7.4.5 we can apply the composition lemma – Lemma 7.4.7 – to the
composition of the ℓ non-interactive, 2ε-differentially private protocols and the
lemma follows.

Corollary 7.4.9. Let 0 < ε ≤ 1. For every ν > 32 and for every set D of views in an
ℓ-round, ε-differentially private, local protocol,

Pr[ViewC(0) ∈ D] ≥ PrA[ViewC(X) ∈ D]− ℓ exp (−(ν − 32)2/32d)

exp (ℓν/d)
.

Proof. Let

D1 =
{
c ∈ D : Pr

A
[ViewC(X) = c] ≤ exp (ℓν/d) Pr[ViewC(0) = c]

}
and

D2 =
{
c ∈ D : Pr

A
[ViewC(X) = c] > exp (ℓν/d) Pr[ViewC(0) = c]

}
.
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That is, D2 = D \D1. By Lemma 7.4.8,

Pr
A
[ViewC(X) ∈ D2] ≤ ℓ exp

(
−(ν − 32)2/32d

)
.

Furthermore, Pr[ViewC(0) ∈ D1] ≥ PrA[ViewC(X)∈D1]
exp(ℓν/d)

. Thus,

Pr[ViewC(0) ∈ D] ≥ Pr[ViewC(0) ∈ D1]

≥ PrA[ViewC(X) ∈ D1]

eℓν/d

=
PrA[ViewC(X) ∈ D]− PrA[ViewC(X) ∈ D2]

eℓν/d

≥ PrA[ViewC(X) ∈ D]− ℓe−(ν−32)2/32d

eℓν/d
.

7.4.3 Completing the Lowerbound for GAP-TR0,τ and SUM in
the Local Model

In this section we complete the proof that in any ℓ-round, ε-differentially
private, local protocols for the gap-threshold function, namely, GAP-TR0,τ , the
curator errs with constant probability when τ ≪

√
n and ℓ is small. Recall that

for proving this result, we construct the distribution A which chooses each bit
in the input independently at random where it is one with probability α and
zero with probability 1 − α. Lemma 7.4.10, which follows from a standard
Chernoff bound argument, states that when generating a vector (X1, . . . , Xn)
according to A, the sum

∑n
i=1Xi is concentrated around its expected value,

which is αn.

Lemma 7.4.10. PrA [
∑n

i=1 Xi ≤ (1− γ)αn] < exp
(
−γ2√n

2ε
√
d

)
for every 0 ≤ γ < 1.

Proof. We apply the following Chernoff bound: Given n zero-one random vari-
ables X1, . . . , Xn and 0 < t < 1, Pr [

∑n
i=1 Xi ≤ (1− t)µ] < exp

(
− t2µ

2

)
, where

µ =
∑n

i=1 E[Xi]. In our case, µ =
√
n

ε
√
d
. Thus, PrA [

∑n
i=1Xi ≤ (1− γ)αn] <

exp
(
−γ2√n

2ε
√
d

)
.

By Corollary 7.4.9 the distributions on the outputs when the input vec-
tor is taken from A and when it is the all zero vector, are not far apart. By
Lemma 7.4.10, with high probability the number of ones in the inputs dis-
tributed according to A is fairly big. These facts are used in Theorem 7.4.11 to
prove the lowerbound.
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Theorem 7.4.11. Let 0 < ε ≤ 1. There exist constants c > 0 and p > 0 such that
in any ℓ-round, ε-differentially private, local protocol for computing GAP-TR0,τ for
τ = c

√
n

εℓ
√
log ℓ

the curator errs with probability at least p.

Proof. Fix any ℓ-round, ε-differentially private, local protocol for computing
GAP-TR0,τ . Recall that in the local model the curator is assumed to be deter-
ministic. Thus, the curator, having seen its overall view of the execution of the
protocol c, applies a deterministic algorithm G to c, where G(c) is the output of
the protocol (which supposed to answer GAP-TR0,τ (x1, . . . , xn) correctly). Let
τ = 0.5αn =

√
n/(2ε

√
d). We denote D

∆
= {c : G(c) = 1}, that is, D contains

all vectors of communication for which the curator answers 1. There are two
cases. If the probability of D under the distribution A is small, then the curator
has a big error when the inputs are distributed according to A. Otherwise, by
Corollary 7.4.9, the probability of D when the inputs are all zero is big, hence
the curator has a big error when the inputs are the all-zero vector. Formally,
there are two cases:

Case 1: PrA[D] < 0.99. We consider the event that the sum of the inputs is at
least τ = 0.5αn and the curator returns an answer 0, that is, the curator errs. We
next prove that when the inputs are distributed according to A the probability
of the complementary of this event is not too big. By the union bound the prob-
ability of the complementary event is at most PrA [

∑n
i=1Xi < 0.5αn] + PrA[D].

By Lemma 7.4.10,

Pr
A
[D] + Pr

A

[
n∑

i=1

Xi < 0.5αn

]
≤ 0.99 + exp

(
−0.25

√
n/(2ε

√
d)
)
≈ 0.99.

Thus, in this case, with probability ≈ 0.01 the curator errs.

Case 2: PrA[D] ≥ 0.99. In this case, we consider the event that the input is
the all-zero vector and the curator answers 1, that is, the curator errs. We next
prove using Corollary 7.4.9 that when the inputs are all zero, the probability
of this event is bounded away from 0 when taking ν = θ(ℓ log ℓ) and d = ℓν =
θ(ℓ2 log ℓ),

Pr[ViewC(0) ∈ D] ≥ PrA[D]− ℓ exp (−(ν − 32)2/32d)

exp (ℓν/d)
>

0.99− 0.5

exp (1)
> 0.01.

Thus, in this case, with probability at least 0.01, the curator errs. As d =

θ(ℓ2 log ℓ), we get that τ =
√
n/(2ε

√
d) = θ(

√
n/(εℓ

√
log ℓ)).

We now state the lowerbound for SUMn which follows from Theorem 7.4.11
by applying the local model variant of Claim 7.2.13.
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Corollary 7.4.12. Let 0 < ε ≤ 1. There exist constants δ > 0 and p > 0 such that in
any ℓ-round, ε-differentially private, local protocol for computing SUMn the curator
errs with probability at least p by at least δ

√
n

εℓ
√
log ℓ

.

Proof. Let Π be an ℓ-round, ε-differentially private, local protocol for comput-
ing SUMn, for which the curator errs by at most τ = δ

√
n

εℓ
√
log ℓ

with probability at
most p. By Claim 7.2.13 there exists an ℓ-round, ε-differentially private, local
protocol for computing GAP-TR0,2τ errs with probability at most p. By Theo-
rem 7.4.11 no such protocol exists.

7.5 Lowerbounds for Binary Sum and GAP-TR in
the Distributed Model

We prove that in any ℓ-round, fixed-communication, (t, ε)-differentially pri-
vate protocol computing the binary sum with additive error less than

√
n/Õ(ℓ),

the number of messages sent in the protocol is Ω(nt). We say that two parties
are adjacent if they communicate in the fixed-communication protocol. In the
heart of our proof is the more general observation that in the information theo-
retic setting, a party that has at most t adjacent parties must protect its privacy
with respect to the set of its adjacent parties, since this set separates it from the
rest of the parties. Thus, any such party, is essentially as limited as any party
participating in a protocol in the local communication model.

7.5.1 Reduction to the Local Model

We start with the transformation of a distributed protocol, using a small
number of messages to a protocol in the local model.

Lemma 7.5.1. If there exists an ℓ-round, fixed communication, (t, ε)-differentially
private protocol that (γ, τ)-approximates SUMn sending at most n(t+1)/4 messages,
then there exists an (ℓ + 1)-round, ε-differentially private protocol in the local model
that (γ, τ)-approximates SUMn/2.

Proof. The intuition behind the proof is that in the information theoretic model
if an input of a party affects the output, then the set parties adjacent to this
party must learn information on its input. Recall that a party in a protocol
Π is lonely if it communicates with at most t other parties and it is popular
otherwise (see Section 7.2). If a party pi is lonely, then it has most t adjacent
parties, and from the privacy requirement in (t, ε)-differentially private proto-
cols, they are not allowed to learn “too much” information on the input of pi.
Therefore, the inputs of lonely parties cannot affect the output of the protocol
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by too much, thus, since there are many lonely parties, the protocol must have
a large error.

Formally, assume that there is a distributed protocol Π satisfying the con-
ditions in the lemma. As the protocol sends at most n(t + 1)/4 messages, the
protocol uses at most n(t + 1)/4 channels. Since each channel connects two
parties, there are at least n/2 lonely parties. We will construct a protocol in
the local model which (γ, τ)-approximates SUMn/2 in two stages: We first con-
struct a protocol P in the local model which (γ, τ)-approximates SUMn and
only protects the privacy of the lonely parties. We next fix the inputs of the
popular parties and obtain a protocol P ′ for n/2 parties that protects the pri-
vacy of all parties.

First Stage. We convert the distributed protocol Π to a protocol P in the local
model as follows: Recall that in the local model each round consists of two
phases where in the first phase the curator sends queries to the parties and
in the second phase parties send the appropriate responses. We hence have a
single round in P for every round of Π such that every message m that Party
pj sends to Party pk in round i in protocol Π, Party pj sends m to the curator in
round i and the curator sends m to Party pk in the first phase of round i + 1.
Finally, at the end of the protocol Party p1 sends the output to the curator.

We next prove that P protects the privacy of lonely parties. Without loss of
generality, let p1 be a lonely party, let T be the set of size at most t of parties
that are adjacent to p1, and let R = {p1, . . . , pn} \ (T ∪ {p1}). See Figure 7.1
for a description of these sets. Fix any neighboring vectors of inputs x and x′

which differ on x1. The view of the curator in P contains all messages sent in
the protocol. It suffices to prove that for every view v,

Pr[ViewP
C (x) = v] ≤ eε · Pr[ViewP

C (x
′) = v] (7.8)

(by simple summation it will follow for every set of views V).

R

p1

T

Figure 7.1: The partition of the parties to sets.

Fix a view v of the curator. For a set A, define αA and α′
A as the probabil-

ities in Π that in each round the set A with inputs from x and x′ respectively
sends messages according to v if it gets messages according to v in previous
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rounds (these probabilities are taken over the random inputs of the parties in
A). Observe that if p1 /∈ A, then αA = α′

A (since x and x′ only differ on x1).
By simulating p1, T , R by three parties and applying Lemma 7.2.7, and by the
construction of P from Π

Pr
[
ViewP

C (x) = v
]

= α{p1} · αT · αR, and

Pr
[
ViewP

C (x
′) = v

]
= α′

{p1} · α
′
T · α′

R = α′
{p1} · αT · αR.

Thus, proving (7.8) is equivalent to proving that

α{p1} ≤ eεα′
{p1}. (7.9)

We use the (t, ε)-privacy of protocol Π to prove (7.9). Let vT be the mes-
sages sent and received by the parties in T in v. As T separates p1 from R, the
messages in vT are all messages in v except for the messages exchanged be-
tween parties in R. The view of T includes the inputs of T in x, the messages
vT , and the random inputs rT = {ri : pi ∈ T}. For a set A, define βA and β′

A as
the probabilities that in Π in each round the set A with inputs from x and x′

respectively sends messages according to vT if it gets messages according to vT
in previous rounds. Note that β{p1} = α{p1} and β′

{p1} = α′
{p1} by the definition

of P . By simulating p1, T , R by three parties, where the random inputs of T
are fixed to rT, and by Lemma 7.2.7,

Pr[ViewΠ
T (x) = (xT, rT, vT )] = α{p1} · βR, (7.10)

and
Pr[ViewΠ

T (x
′) = (xT, rT, vT )] = β′

{p1} · β
′
R = α′

{p1} · βR. (7.11)

(recalling that xT = x′
T). The above probabilities are taken over the random

strings of R and p1 when the random strings of T are fixed to rT. The (t, ε)-
differential privacy of Π implies that

Pr[ViewΠ
T (x) = (xT, rT, vT )] ≤ eε Pr[ViewΠ

T (x
′) = (xT, rT, vT )]. (7.12)

Thus, by Equations 7.10, 7.11, and 7.12, α{p1} ≤ eεα′
{p1} and therefore P is ε-

differentially private with respect to inputs of lonely parties.

Second Stage. There are at least n/2 lonely parties in Π; w.l.o.g., parties
p1, . . . , pn/2 are lonely. We construct a protocol P ′ for (γ, τ)-approximating
SUMn/2 by executing Protocol P where (i) Party pi, where 1 ≤ i ≤ n/2, with
input xi sends messages in P ′ as Party pi with input xi sends them in P ; and (ii)
Party p1 in P ′ simulates all other n/2 parties in P , that is, for every n/2 < i ≤ n,
it chooses a random input ri for pi and in every round it sends to the curator
the same messages as pi would send with xi = 0 and ri. Since the curator sees
the same view in P and P ′ and since the privacy of lonely parties is protected



7.5 Lowerbounds for Binary Sum and GAP-TR in the Distributed Model 91

in P , the privacy of each of the n/2 parties in P ′ is protected. Protocol P ′,
therefore, (γ, τ)-approximates SUMn/2 (since we fixed xi = 0 for n/2 < i ≤ n
and P ′ returns the same output distribution of Π, which (γ, τ)-approximates
SUMn for all possible inputs).

We are now ready to state the main theorem of this section.

Theorem 7.5.2. Let 0 < ε ≤ 1. There exist constants δ > 0 and γ > 0 such that
in any ℓ-round, fixed-communication, (t, ε)-differentially private protocol for approxi-
mating SUMn that sends at most n(t+1)/4 messages the protocol errs with probability
at least γ by at least δ

√
n

ε(ℓ+1)
√

log(ℓ+1)
.

Proof. Assume to the contrary, that there is an ℓ-round, (t, ε)-differentially pri-
vate protocol Π for computing SUMn, which sends at most n(t + 1)/4 mes-
sages and errs by at most τ = δ

√
n

ε(ℓ+1)
√

log(ℓ+1)
with probability at least 1 − γ.

By Lemma 7.5.1 there exists an ℓ + 1-round, ε-differentially private, local pro-
tocol P for computing SUMn/2 which errs by at most τ = δ

√
n

ε(ℓ+1)
√

log(ℓ+1)
=

√
2δ
√

n/2

ε(ℓ+1)
√

log(ℓ+1)
with probability at least 1 − γ. This contradicts Corollary 7.4.12.

Theorem 7.5.2 suggests that whenever we require that the error of a differ-
entially private protocol for approximating SUM to be of magnitude smaller
than

√
n/ε, there is no reason to relinquish the simplicity and modularity sug-

gested by the natural paradigm for constructing protocols. In this case, it is
possible to construct relatively simple efficient SFE protocols, which use O(nt)
messages, and compute an additive (O(1/ε), O(1))-approximation of SUM. We
thus observe a phase transition threshold at θ(

√
n/ε) magnitude of error.

Remark 7.5.3. It can also be shown that in any ℓ-round, fixed-communication,
(t, ε)-differentially private protocol computing the GAP-TRκ,τ , for any 0 ≤ κ ≤
n − τ the number of messages sent in the protocol is Ω(nt), for τ =

√
n/Õ(ℓ).

To show this, use the ideas similar to those of Lemma 7.5.1 and apply Theo-
rem 7.4.11 to assert that any ℓ-round, fixed-communication, (t, ε)-differentially
private protocol computing the GAP-TR0,τ , the number of messages sent in
the protocol is Ω(nt), for τ =

√
n/Õ(ℓ). Then, using Claim 7.2.14, infer that the

same is true for general κ.
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7.6 SFE for Symmetric Approximations of Binary-
Sum

In this section we show the advantage of using the alternative paradigm for
constructing distributed differentially private protocols whenever we allow an
O(

√
n/ε) approximation. Recall that it is possible to construct differentially

private protocols for such approximations that use 2n messages and are secure
against coalitions of size up to t = n−1 (see Section 7.3.1). We next prove, using
ideas from Chor and Kushilevitz [20], that any SFE protocol for computing a
symmetric approximation for SUMn, using less than nt/4 messages, has error
magnitude Ω(n).

Remark 7.6.1. We remark that allowing O(nt) messages, it is fairly straight-
forward to construct a (t, ε)-differentially private protocol with constant ad-
ditive error, using the natural paradigm. That is, first selecting an ε-private
approximation, say the one described in Example 6.3.1, and then constructing
a t-secure protocol for computing it.

We first give the definition of SFE protocols computing a given randomized
function f̂(·). Here, again, we only consider protocols where all parties are
honest-but-curious and compute the same output. The definition is given in the
information-theoretic model, a definition of SFE in the computational model
can be found in [45].

Definition 7.6.2 (SFE). Let f̂ : ({0, 1}∗)n → {0, 1}∗ be an n-ary randomized func-
tion. Let Π be an n-party protocol for computing f̂ . For a coalition T ⊆ {1, . . . , n},
the view of T during an execution of Π on x = (x1 . . . xn), denoted ViewT (x), is de-
fined as in Definition 7.2.1, i.e., ViewT (x1, . . . , xn) is the random variable containing
the inputs of the parties in T (that is, {xi}i∈T ), the random inputs of the parties in
T , and the messages that the parties in T received during the execution of the protocol
with inputs x = (x1, . . . , xn).

We say that Π is a t-secure protocol for f̂ if there exist a randomized function,
denoted S, such that for every t′ ≤ t and for every T = {i1, . . . , it′} as above and for
every input vector x = (x1 . . . xn), the following two random variables are identically
distributed,

•
{
S
(
T,
(
xi1 , . . . , xit′

)
, o
)
, o
}

where, o is obtained first by sampling f̂(x) and
then S is applied to

(
T,
(
xi1 , . . . , xit′

)
, o
)
.

•
{
ViewT (x),OutputΠ(ViewT (x))

}
where OutputΠ(ViewT (x)) denotes the

output during the execution represented in ViewT (x).

Definition 7.6.3 (Symmetric randomized function). We say that a randomized
function f̂ over domain D with range R is symmetric if it does not depend on
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the ordering on the coordinates of the input. I.e., for every (x1, . . . , xn) ∈ Dn

and every permutation π : [n] → [n] the distributions (over R) implied by
f̂(x1, . . . , xn) and by f̂(xπ(1), . . . , xπ(n)) are identical.

Lemma 7.6.4. Let f̂ be a symmetric function approximating SUMn such that for
every input vector x, it holds that

∣∣∣f̂(x)− SUM(x)
∣∣∣ < n/4, and let t ≤ n− 2. Every

fixed-communication t-secure protocol Π for computing f̂ uses at least n(t+ 1)/4
messages8.

Proof. Let Π be a t-secure protocol computing f̂ using less than n(t+ 1)/4 mes-
sages. There are at least n

2
lonely parties in Π. The intuition for the proof is that

a lonely party does not affect the computation, since the set of parties adjacent
to it, being smaller than t+1, would be able to infer information about its input.
The proof is given in two steps. In the first step, we show that for any given
lonely party pi, for any fixed inputs for all other parties, and for any transcript
c of the protocol, the probability of c being the transcript of the protocol when
xi = 0 is exactly the same as the probability of c being the transcript of the
protocol when xi = 1. In the second step of the proof, we use this to show that
with probability at least 1/2, the protocol errs by n/4.

Without loss of generality, assume p1 is lonely and assume p2 is not adjacent
to p1. Let T be the set of parties adjacent to p1 and let R = {p1, . . . , pn}\(T∪{p1})
(e.g., p2 ∈ R). Recall that for a transcript c we denote by αc

1(x1), the probabil-
ity that p1 is consistent with c with input x1, namely, the probability that p1
with input x1 sends at each round messages according to c, provided it re-
ceived all messages according to c in previous rounds. Our goal in the first
part of the proof is to prove that for any transcript of the protocol c, it holds
that αc

1(0) = αc
1(1). Towards this end, we pursue the following proof structure.

We first consider two inputs z and y such that SUM(z) = SUM(y), but y1 = 0
while z1 = 1 and consider the restriction of c to its intersection cT with the view
of T (in other words, we think of cT as the protocol with three parties, p1, T,
and R, implied by c). We use Definition 7.6.3 to prove that the probability of
cT is the same with z and with y. We then use Lemma 7.2.7 to present these
probabilities as a product of αcT

1 (x1), α
cT
T (xT) and αcT

R (xR), where xT (respec-
tively, xR) are the inputs of parties in T (respectively, in R). We then assert, by
considering all prefices of cT , that each factor of these two multiplications is
the same in both cases and hence αc

1(0) = αcT
1 (0) = αcT

1 (1) = αc
1(1).

Fix any inputs x3, . . . , xn for the parties p3, . . . , pn. Let y be the input vector
such that yk = xk for k > 2, y1 = 0, and y2 = 1 and let z be the input vector

8We note that the lemma does not hold for non-symmetric functions. For example, we can
modify the bit flip protocol described in Section 7.3.1 to an SFE protocol for a non-symmetric
function, retaining the number of messages sent (but not their length): in Step (2) p1 (acting
as the curator) also sends z = (z1, . . . , zn), and in Step (3) each pi locally outputs f̂ + z2−n,
treating z as an n-bit binary number.
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such that zk = xk for k > 2, z1 = 1, and z2 = 0. We first claim that the distri-
bution over the views of T when the protocol is executed with y is the same
as when the protocol is executed with z. I.e., we claim that for any possible
view vT of the set T , it holds that, Pr [ViewT (y) = vT ] = Pr [ViewT (z) = vT ].
This is true since the two random variables

{
S
(
T,
(
yi1 , . . . , yit′

)
, o
)
, o
}

and{
S
(
T,
(
zi1 , . . . , zit′

)
, o
)
, o
}

(as defined in Definition 7.6.2) are identically dis-
tributed, since SUM(y) = SUM(z) and since f̂ is symmetric. Hence, it holds
by the t-security of the protocol that both

{
ViewT (y),OutputΠ(ViewT (y))

}
and{

ViewT (z),OutputΠ(ViewT (z))
}

are also identically distributed. Thus, since
the view of T contains the transcript cT of messages sent between parties in T
and parties in {p1} ∪ R, we have that for any such possible transcript cT , the
probability that parties send messages according to cT is the same when the
protocol is executed with y and when the protocol is executed with z. Fur-
thermore, for any possible prefix c′T of any transcript cT of T , the probability
of messages sent according to c′T when executing Π with input y is the same
as when executing Π with input z. This is true as this probability is merely the
sum over the probabilities of all transcripts completing c′T .

Without loss of generality, we can analyze the execution of the protocol as
if at each round only a single message is sent by a single party. Let j be such
that p1 sends a message in round j and denote by hj = hj−1,mj the, prefix of cT
also viewed by p1 (messages sent or received by p1), in the first j rounds, where
hj−1 is the history of messages viewed by p1 in the first j − 1 rounds, and mj

is the message p1 sends in round j, according to cT . By the argument above,
the probabilities of hj−1 being seen by p1 are the same when the protocol is
executed with y and when the protocol is executed with z and the probabilities
of hj being seen by p1 are the same when the protocol is executed with y and
when the protocol is executed with z.

Therefore, for any given history of messages hj−1 viewed by p1, and for
any possible message mj of p1, the probabilities of p1 sending mj having seen
message history hj−1 are the same when x1 = 0 and when x1 = 1. Thus, since
the probability of p1 being consistent with a view cT (of T ) is the product of
the probabilities that it is consistent at each round, we have αcT

1 (0) = αcT
1 (1).

Let c be a full transcript of the protocol, and cT be its restriction to messages
sent between parties in T and parties in {p1} ∪ R. Since p1 does not see any
message in c that is not in cT , it holds for every x1 that αc

1(x1) = αcT
1 (x1). Thus,

αc
1(0) = αc

1(1).
Hence, we proved that for any lonely party pi, and any full transcript of the

protocol c, it holds that αc
i(0) = αc

i(1). Consider the all zero input vector and
the input vector x such that xi = 1 if and only if pi is lonely. By Lemma 7.2.7 we
have that for any given full transcript c, the probability of c being exchanged
with 0 is exactly the probability of c being exchanged with x. Thus, if with
probability at least 1/2, when executing the protocol with 0, the exchanged
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transcript implies a value less than n/4, then with probability at least 1/2, the
protocol errs by at least n/4 when executed with x. Otherwise, with probabil-
ity at least 1/2, the protocol errs by at least n/4 when executed with 0.
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Chapter 8

Conclusions and Future Work

8.1 Phase Transition for Ackermannian Ramsey Num-
bers

We have proved sharp phase transition thresholds for the regressive and
Paris-Harrington Ramsey numbers for pair colorings, similar to the thresholds
obtained in [81] for provability in PA. Although the proofs for these results are
quite different, it might be interesting to see that they can be motivated by a
unifying underlying phase transition principle. As it turned out, finite com-
binatorics provides bounds (on finite Ramsey numbers) which also provide
good bounds on regressive and Paris-Harrington Ramsey numbers below the
threshold. Indeed these calculations provide a priori guesses of where the de-
sired thresholds might be located.

In our examples it turned out that the guesses were good, since for parame-
ter functions growing faster than the threshold function, a suitable iteration ar-
gument shows that the induced Ramsey functions have extraordinary growth.
In vague analogy with dynamic systems, one might consider the threshold
region as an unstable fixed point of a renormalization operator given by the
bounds on finitary Ramsey numbers. It is interesting to consider more settings
in which this paradigm for locating threshold points can be applied.

In Chapter 3 we also use our construction to obtain an incomprehensibly
large lowerbound of A53(2

2274) on the Id-regressive Ramsey number of k = 82,
where A53 is the 53-rd approximation of Ackermann’s function.

Finding explicit lower and upper bounds for Ramsey numbers is not just a
matter of aesthetics and intellectual challenge. These numbers are so hard to
grasp that even finding lower and upper bounds usually requires some pro-
found understanding of their behavior. Thus, looking for more explicit bounds
for regressive and Paris-Harrington Ramsey numbers is an important open
problem.

Caicedo explores this direction in [16], where he improves our lowerbound.
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He also gives simpler arguments for the fact that Rreg
Id grows exactly as the

Ackermann function (note that our result only states that it grows at least
with Ackermannian rate). His results are indeed obtained by introducing a
new approach for the investigation of regressive Ramsey numbers. However,
Caicedo only considers the case of g = Id. Applying Caicedo’s approach with
other functions g may prove beneficial to better understanding the threshold
behavior of g-regressive Ramsey numbers.

8.2 Iteration Hierarchies

We have proved phase transition behaviors of functions defined via diag-
onalization from an iteration hierarchy (of Grzegorczyk type). These transi-
tions are obtained by parameterizing both the start function g and the mod-
ulus function h, by which the diagonalization is defined. Specifically, fixing
g(x) = x+1 (as in the Ackermann hierarchy), we showed a sharp threshold on
h at which the resulting hierarchy stops being primitive recursive and becomes
Ackermannian. Furthermore, we have shown this threshold to be intrinsically
related to g-regressive Ramsey numbers.

For a class of start functions g (starting with g(x) = x + ε for 0 < ε ≤ 1
and constantly increasing them), we showed appropriate classes of iteration
modulus h for which the resulting classes of hierarchies are slow-growing and
very close classes of iteration modulus h for which the resulting classes of hi-
erarchies are fast-growing.

In general we expect that sharp phase transition thresholds can be obtained
for any start function g(x) = Ad(x), and we expect that the resulting thresholds
are all different. It would be interesting to cover this material and structural
stability of resulting phase transitions.

Another natural generalization of our work would be considering phase
transition thresholds for the transfinite extensions of the Ackermann hierar-
chy, which is also known as Schwichtenberg-Wainer hierarchy [15, 73, 76]. We
expect essentially that stepping up in the ordinals by one power of ω will allow
for one additional iteration of the binary logarithm function in the threshold
function.

The functions gl considered in Chapter 5 seem to appear frequently in weak
arithmetic. It seems to be of general interest to explore possible connections.

8.3 Distributed Differential Privacy

We initiated an examination of the paradigm where an analysis and the
protocol for computing it are chosen simultaneously. We showed examples
that present the potential benefits of using this paradigm: it can lead to simpler
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protocols and, more importantly, it can lead to more efficient protocols. We
examined this paradigm with respect approximations to the binary SUM, and
observed a phase transition depending on the magnitude of additive error we
allow.

For the upper bound, we observed that for approximations with additive
error ≈

√
n there is a gain: it is possible to construct differentially private pro-

tocols that are much more efficient than any SFE protocol for a function in this
class. Moreover, these differentially private constant-round protocols are se-
cure against coalitions of size up to t = n − 1, and need not rely on secure
channels. In the process we proved a generalization of the result of Chor and
Kushilevitz [20], who showed a lower bound on the communication complex-
ity of an SFE protocol for computing SUM. We show a similar lowerbound for
any symmetric approximation of SUM (with sub-linear error).

The main result presented in Chapter 7 is a lowerbound on the communi-
cation complexity of any low-communication protocol for computing differ-
entially private analyses approximating SUM. Our lowerbound is first proved
for protocols in the local model using a small number of rounds. We then ex-
tend the result to the distributed model, by showing that low-communication
protocols in the distributed model for computing SUM are not more powerful
than protocols in the simple local model.

The upper and lower bounds are tight and indicate a sharp threshold at
additive error θ̃(

√
n) for protocols computing SUM(·) using at most a loga-

rithmic number of rounds. These results also yield a separation between the
local model and the global model (where it is possible to compute analyses ap-
proximating SUM within constant additive error). They also yield a separation
between the computational and the information theoretic settings, since under
computational assumptions on the parties, it is possible to construct protocols
for computing analyses approximating SUM within constant additive error,
which use 2n messages (even in the local model).

We view our results as part of the common effort towards a full characteri-
zation of what can be privately computed in each communication model. Our
work leaves open the question of whether interaction (for more than a constant
number of rounds) can help in approximating SUM in the local model. We be-
lieve it would be very interesting to extend the discussion to the malicious
and/or computational settings.
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[36] P. Erdős and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290–
297, 1959.



104 BIBLIOGRAPHY

[37] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hung. Acad. Sci, 5:17–61, 1960.

[38] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of the Twenty-Second ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pages 211–222, 2003.

[39] D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. In Proc.
of the 41st ACM Symp. on the Theory of Computing, 2009.

[40] E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem.
J. Amer. Math. Soc, 12:1017–1054, 1999.

[41] E. Friedgut, G. Kalai, and C. J. N. Kahn. Every monotone graph property
has a sharp threshold. Proc. Amer. Math. Soc, 124:2993–3002, 1996.

[42] E. Friedgut and M. Krivelevich. Sharp thresholds for certain Ramsey
properties of random graphs. Random Struct. Algorithms, 17(1):1–19, 2000.

[43] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-
maximizing privacy mechanisms. In Proc. of the 41st ACM Symp. on the
Theory of Computing, 2009.
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