
1/p-Secure Multiparty Computation without an Honest Majority
and the Best of Both Worlds

Amos Beimel∗

Department of Computer Science
Ben Gurion University

Be’er Sheva, Israel

Yehuda Lindell†

Department of Computer Science
Bar Ilan University
Ramat Gan, Israel

Eran Omri‡

Department of Computer Science and Mathematics
Ariel University

Ariel, Israel

Ilan Orlov§

Department of Computer Science
Ben Gurion University

Be’er Sheva, Israel

September 10, 2013

Abstract
A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more

harm than in an ideal computation, where parties give their inputs to a trusted party that returns the
output of the functionality to all parties. In particular, in the ideal model such computation is fair – if the
corrupted parties get the output, then the honest parties get the output. Cleve (STOC 1986) proved that,
in general, fairness is not possible without an honest majority. To overcome this impossibility, Gordon
and Katz (Eurocrypt 2010) suggested a relaxed definition – 1/p-secure computation – which guarantees
partial fairness. For two parties, they constructed 1/p-secure protocols for functionalities for which the
size of either their domain or their range is polynomial (in the security parameter). Gordon and Katz ask
whether their results can be extended to multiparty protocols.

We study 1/p-secure protocols in the multiparty setting for general functionalities. Our main result is
constructions of 1/p-secure protocols that are resilient against any number of corrupted parties provided
that the number of parties is constant and the size of the range of the functionality is at most polynomial
(in the security parameter n). If fewer than 2/3 of the parties are corrupted, the size of the domain of each
party is constant, and the functionality is deterministic, then our protocols are efficient even when the
number of parties is log log n. On the negative side, we show that when the number of parties is super-
constant, 1/p-secure protocols are not possible when the size of the domain of each party is polynomial.
Thus, our feasibility results for 1/p-secure computation are essentially tight.

We further motivate our results by constructing protocols with stronger guarantees: If in the execution
of the protocol there is a majority of honest parties, then our protocols provide full security. However, if
only a minority of the parties are honest, then our protocols are 1/p-secure. Thus, our protocols provide
the best of both worlds, where the 1/p-security is only a fall-back option if there is no honest majority.

∗Generously supported by ISF grant 938/09 and by the Frankel Center for Computer Science.
†Generously supported by the European Research Council as part of the ERC project LAST, and by the ISRAEL SCIENCE

FOUNDATION (grant No. 781/07).
‡Generously supported by the European Research Council as part of the ERC project LAST, and by the ISRAEL SCIENCE

FOUNDATION (grant No. 781/07).
§Generously supported by ISF grant 938/09 and by the Frankel Center for Computer Science.

1

Contents

1 Introduction 4
1.1 Previous Results . 4
1.2 Our Results . 5
1.3 The Ideas Behind Our Protocols . 6
1.4 Open Problems . 7

2 Background and the Model of Computation 7
2.1 Notations . 8
2.2 The Real vs. Ideal Paradigm . 8

2.2.1 1/p-Indistinguishability and 1/p-Secure Computation 9
2.3 Security-with-Abort and Cheat-Detection . 10
2.4 A Useful Lemma . 11
2.5 Cryptographic Tools . 12

3 Feasibility Results for 1/p-Secure Multiparty Computation 13

4 Protocols with Less Than Two-Thirds Corrupted Parties 14
4.1 The Protocol for Polynomial-Size Domain with a Dealer 14
4.2 Eliminating the Dealer of the Protocol . 16
4.3 A 1/p-Secure Protocol for Polynomial Range . 18
4.4 Proof of 1/p-Security of the Protocols with a Dealer for Less Than Two-Thirds Corrupted

Parties . 19
4.4.1 The Simulator for Protocol MPCWithDLtdr 19
4.4.2 Proof of the Correctness of the Simulation for MPCWithDLtdr 20
4.4.3 The Simulator for the Protocol with the Dealer for Polynomial Range 23

4.5 Proof of Security for the Protocols without the Dealer . 25
4.5.1 The Simulator for Protocol MPCLtdr . 25

4.6 Proving the Correctness of Protocol MPCLtdr and Protocol MPCPolyRangeLtdr . . 30

5 Protocols for any Number of Corrupted Parties 31
5.1 The m-Party Protocol for Polynomial-Size Domain . 32

5.1.1 Signatures and Verification against any Computational Bounded Adversary 35
5.2 The Simulator for Protocol MPCUnLtdr . 38
5.3 Proof of the Correctness for the Simulation for MPCUnLtdr 43

5.3.1 Proof for Deterministic Functionalities . 45
5.3.2 Proof for Randomized Functionalities . 49

5.4 A 1/p-Secure Protocol for Polynomial Range . 50
5.5 Proof of Security for Protocol MPCUnLtdPolyRanger 51

6 Best of Both Worlds – The 1/p Way 52
6.1 Best of Both Worlds – The 1/p-Security-With-Abort Variant 53
6.2 Best of Both Worlds – The 1/p-(full)-Security Variant . 56

2

7 Impossibility Results 59
7.1 Impossibility of 1/p-secure Computation with Non-Constant Number of Parties 59
7.2 Impossibility of Achieving “The Best of Both Worlds” for General Functionalities 60

7.2.1 Impossibility of Achieving “The Best of Both Worlds” for a 3-Party Functionality . . 61
7.2.2 Impossibility of Achieving “Best of Both Worlds” Computations with Non-Constant

Number of Parties . 64

A Proof of Lemma 2.6 67

3

1 Introduction

A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more harm
than in an ideal computation, where parties give their inputs to a trusted party, which, in turn, returns the
output of the functionality to all parties. This is formalized by requiring that for every adversary in the
real world, there is an adversary in the ideal world, called simulator, such that the output of the real-world
adversary and the simulator are indistinguishable in polynomial time. Such security can be achieved when
there is a majority of honest parties [18]. Secure computation is fair – if the corrupted parties get the output,
then the honest parties get the output. Cleve [10] proved that, in general, fairness is not possible without an
honest majority.

To overcome the impossibility of [10], Gordon and Katz [24] suggested a relaxed definition – 1/p-secure
computation – which guarantees partial fairness. Informally, a protocol is 1/p-secure if for every adversary
in the real world, there is a simulator running in the ideal world, such that the output of the real-world
adversary and the simulator cannot be efficiently distinguished with probability greater than 1/p. For two
parties, Gordon and Katz construct 1/p-secure protocols for functionalities for whom the size of either their
domain or their range is polynomial (in the security parameter). They also give impossibility results when
both the domain and range are super-polynomial. Gordon and Katz ask whether their results can be extended
to multiparty protocols. We give positive and negative answers to this question.

1.1 Previous Results

Cleve [10] proved that any protocol for coin tossing without an honest majority cannot be fully secure;
specifically, if the protocol has r rounds, then it is at most 1/r-secure. Protocols with partial fairness, under
various definitions and assumptions, have been constructed for coin tossing [10, 11, 29, 5], for contract
signing/exchanging secrets [7, 28, 13, 6, 12, 8], and for general functionalities [33, 14, 3, 19, 31, 15, 24]. We
next describe the papers that are most relevant to our paper. Moran, Naor, and Segev [29] constructed 2-party
protocols for coin tossing that are 1/r-secure (where r is the number of rounds in the protocol). Gordon
and Katz [24] defined 1/p-security and constructed 2-party 1/p-secure protocols for every functionality
whose size of either the domain or the range of the functionality is polynomial. Finally, Beimel, Omri, and
Orlov [5] constructed multiparty protocols for coin tossing that are O(1/r)-secure provided that the fraction
of bad parties is slightly larger than half. In particular, their protocol is O(1/r)-secure when the number of
parties is constant and the fraction of bad parties is fewer than 2/3.

Gordon et al. [21] showed that complete fairness is possible in the two party case for some functions.
Gordon and Katz [23] showed similar results for the multiparty case. The characterization of the functions
that can be computed with full fairness without an honest majority is open. Gordon et al. [22] studied
completeness for fair computations. Specifically, they showed a specific function that is complete for fair
two-party computation; this function is also complete for 1/p-secure two-party computation.

Ishai et al. [25] considered “best of two worlds” protocols. Such protocols should provide full security
with an honest majority and some (weaker) security if there is only a minority of honest parties. They give
positive and negative results for the existence of such protocols. We discuss some of their results below.

Recently, Asharov et al. [1] considered the class of deterministic Boolean functions with finite domain,
and they asked for which functions in this class is it possible to information-theoretically toss an unbiased
coin, given a protocol for securely computing the function with fairness. They provided a complete charac-
terization of the functions in this class that imply and do not imply fair coin tossing. This result is a step to
answering the question of which functions cannot be securely computed with fairness.

4

1.2 Our Results

We study 1/p-secure protocols in the multiparty setting. We construct protocols for general functionalities
that are 1/p-secure against any number of corrupted parties, provided that the number of parties is con-
stant. Our protocols require that the size of the range of the (possibly randomized) functionality is at most
polynomial in the security parameter. That is, we show the following feasibility result.

Theorem (Informal). Let F be a (possibly randomized) functionality with a constant number of parties for
whom the size of range is at most polynomial in the security parameter n. Then, for every polynomial p(n)
there is a 1/p(n)-secure protocol for F tolerating any number of corrupted parties.

Our results are the first general feasibility results for 1/p-secure protocols in the multi-party setting, e.g.,
even for the case that there are 3 parties and two of them might be corrupted. We provide two additional
protocols that are 1/p-secure assuming that the fraction of corrupted parties is fewer than 2/3. These two
protocols are more efficient than the protocols discussed above. Specifically, one of the protocols is 1/p-
secure even when the number of parties is log log n (where n is the security parameter) provided that the
functionality is deterministic and the size of the domain of inputs is constant.

The definition of 1/p-security allows that with probability 1/p the outputs of the honest parties are
arbitrary, e.g., for a Boolean function the outputs can be non-Boolean. Some of our protocols are always
correct; that is, they always return an output of the functionality with the inputs of the honest parties and
some inputs for the corrupted parties. This correctness property is essential for the best of both worlds
results described below.

We further motivate our results by constructing a protocol with best of both worlds guarantees: we
construct a single protocol such that (1) If in the execution of the protocol there is a majority of honest
parties, then our protocol provides full security. (2) If only a minority of parties is honest, then our protocol
is 1/p-secure. The protocol succeeds although it doed not know in advance if there is an honest majority or
not. Specifically, we show that

Theorem (Informal). Let F be a functionality with a constant number of parties whose size of domain and
range is at most polynomial in the security parameter n. Then, for every polynomial p(n) there is a protocol
for F tolerating any number of corrupted parties such that

• If there is an honest majority, then the protocol is fully secure.

• If there is no honest majority, then the protocol is 1/p(n)-secure.

Thus, the 1/p-security guarantee can be considered as a fall-back option if there is no honest majority. Our
protocol provides the best of both worlds, the world of honest majority where the known protocols (e.g., [18])
provide full security if there is an honest majority and provide no security guarantees if no such majority
exists, and the world of secure computation without an honest majority. In the latter world the security is
either security-with-abort or 1/p-security. These types of security are incomparable. Ishai et al. [25] proved
that there is no general protocol that provides full security when there is an honest majority and security-
with-abort without an honest majority. Thus, our protocol provides the best possible combination of both
worlds.

Katz [27] presented a protocol, for any functionality F , with full security when there is an honest
majority, as well as 1/p-security with abort for any number of corrupted parties. This result assumes a non-
rushing adversary. In contrast, our protocol provides a stronger security with a minority of honest parties
and can handle the more realistic case of a rushing adversary. However, our protocol only works with a
constant number of parties and a polynomial size domain.

5

To complete the picture, we prove interesting impossibility results. We show that, in general, when the
number of parties is super-constant, 1/p-secure protocols are not possible without an honest majority when
the size of the domain of each party is polynomial. This impossibility result justifies the fact that in our
protocols the number of parties is constant. We also show that, in general, when the number of parties is
ω(log n), 1/p-secure protocols are not possible without an honest majority even when the size of the domain
of each party is 2. The proof of the impossibility results is rather simple and follows from an impossibility
result of [24]. Nevertheless, they show that our general feasibility results are almost tight.

Our impossibility results should be contrasted with the coin-tossing protocol of [5] that is an efficient
1/p-secure protocol even when m(n), the number of parties, is polynomial in the security parameter and
the number of bad parties is m(n)/2 + O(1). Our results show that these parameters are not possible for
general 1/p-secure protocols even when the size of the domain of each party is 2.

The above mentioned impossibility results do not rule out that the best of two worlds results of Katz [27]
can be strengthened by removing the restriction that the adversary is non-rushing. We show that this is
impossible; that is, in general, when the number of parties is super-constant and the size of the domain of
each party is polynomial, there is no protocol that is fully secure with an honest majority and 1/p-secure-
with-abort without such a majority.

1.3 The Ideas Behind Our Protocols

Our protocols use ideas from the protocols of Gordon and Katz [24] and Beimel et al. [5], both of which
generalize the protocol of Moran, Naor, and Segev [29]. In addition, our protocols introduce new ideas
that are required to overcome challenges that do not occur in previous works, e.g., dealing with inputs (in
contrast to the scenario of [5]) and dealing with a dishonest majority even after parties abort (in contrast to
the scenario of [24]). In particular, in order to achieve resilience against any number of corrupted parties
we introduce new techniques for hiding the round in which parties learn the output of an execution. Our
protocols proceed in rounds, where in each round’s values are given to subsets of parties. There is a special
round i⋆ in the protocol. Prior to round i⋆, the values given to a subset of parties are values that can be
computed from the inputs of the parties in this subset; starting from round i⋆ the values are the “correct”
output of the functionality. The values given to a subset are secret shared such that only if all parties in the
subset cooperate can they reconstruct the value. Similar to the protocols of [29, 24, 5], the adversary can
cause harm (e.g., bias the output of the functionality) only if it guesses i⋆; we show that in our protocols this
probability is small and the protocols are 1/p-secure.

In our protocols that are 1/p-secure against a fraction of 2/3 corrupted parties (which are described
in Section 4), if in some round many (corrupted) parties have aborted and there is a majority of honest
parties among the active parties, then the set of active parties reconstructs the value given to this set in the
previous round. The mechanism to secret share the values in this protocols is similar to [5]; however, there
are important differences in this sharing, as the sharing mechanism of [5] is not appropriate for 1/p-secure
computations of functionalities that depend on inputs. The fact that the protocol proceeds until there is an
honest majority imposes some restrictions that imply that the protocol can tolerate only a fraction of 2/3
corrupted parties.

Our protocols that are 1/p-secure against any number of corrupted parties (which are described in Sec-
tion 5) take a different route. To describe the ideas of the protocol, we consider only the three-party case,
where at most two parties are corrupted. In the protocol if one party aborts, then the remaining two parties
execute a two-party protocol for the functionality. Again, this protocol proceeds in rounds, where in each
round each party gets a value. If the party in the three-party protocols aborts after round i⋆, then all these
values are the “correct” output of the functionality. To hide i⋆, also prior to i⋆, with some probability all

6

these values must be equal. With the remaining probability, a new i⋆ is chosen with uniform distribution
for the two-party protocol. In other words, in the two-party protocol prior to the original i⋆, with some
probability, we chose a “fake” value of 1 for the new i⋆ of the two-party protocol.

1.4 Open Problems

In our impossibility results the size of the range of each party is super-polynomial (in the security parameter).
However, in all our protocols the size of the range of each party is polynomial. It is open if there is an efficient
1/p-secure protocol when the number of parties is not constant and the size of both the domain and range
of each party is polynomial. In our protocols, the number of rounds is double-exponential in the number of
parties. Our impossibility results do not rule out that this double-exponential dependency can be improved.

The protocols of [24] are private – the adversary cannot learn any information on the inputs of the honest
parties (other than the information that it can learn in the ideal world of computing F). The adversary can
only bias the output. Some of our protocols are provably not private (that is, the adversary can learn extra
information). However, for other protocols, we do not know whether they are private. It is open if there are
general multiparty 1/p-secure protocols that are also private.

2 Background and the Model of Computation

A multi-party protocol with m parties is defined by m interactive probabilistic polynomial-time Turing
machines p1, . . . , pm. Each Turning machine, called party, has the security parameter 1n as a joint input
and a private input yj . The computation proceeds in rounds. In each round, the active parties broadcast and
receive messages on a common broadcast channel. The number of rounds in the protocol is expressed as
some function r(n) in the security parameter (typically, r(n) is bounded by a polynomial). At the end of
the protocol, the (honest) parties should hold a common value w (which should be equal to an output of a
predefined functionality).

In this work we consider a malicious, static, computationally bounded (i.e., non-uniform probabilistic
polynomial-time) adversary that controls some subset of parties. That is, before the beginning of the pro-
tocol, the adversary corrupts a subset of the parties and may instruct them to deviate from the protocol in
an arbitrary way. The adversary has complete access to the internal states of the corrupted parties and fully
controls the messages that they broadcast throughout the protocol. The honest parties follow the instructions
of the protocol.

The parties communicate via a synchronous network, using only a broadcast channel. The adversary is
rushing; that is, in each round the adversary sees the messages broadcast by the honest parties before broad-
casting the messages of the corrupted parties for this round (thus, the broadcast messages of the corrupted
parties can depend on the messages of the honest parties in the same round).

We consider 1/p-secure computation. Roughly speaking, we say that a protocol Π is 1/p-secure if for
every adversary A attacking Π in the real-world there is a simulator S running in the ideal-world, such that
the global output of the real-world and the ideal-world executions cannot be distinguished with probability
greater than 1/p. The formal definitions of 1/p-security are given in Section 2.2. Security-with-abort and
cheat-detection, which is a tool used in this paper, is defined in Section 2.3. The cryptographic tools we use
are described in Section 2.5.

7

2.1 Notations

For an integer ℓ, define [ℓ] = {1, . . . , ℓ}. For a set L ⊆ [m], define QL = {pj : j ∈ L}. An m-party
functionality F = {fn}n∈N is a sequence of polynomial-time computable, randomized mappings fn :

(Xn)
m → Zn, where Xn = {0, 1}ℓd(n) and Zn = {0, 1}ℓr(n) are the domain of inputs of each party and

the range respectively; ℓd, ℓr : N → N are some fixed functions. We denote the size of the domain and the
range of F by d(n) and g(n), respectively; that is, d(n) = 2ℓd(n) and g(n) = 2ℓr(n). For a randomized
mapping fn, the assignment w ← fn(x1, . . . , xm) denotes the process of computing fn with the inputs
x1, . . . , xm and with uniformly chosen random coins and assigning the output of the computation to w. If
F is deterministic, we sometimes call it a function. We sometimes omit n from functions of n (for example,
we write d instead of d(n)).

2.2 The Real vs. Ideal Paradigm

The security of multiparty computation protocols is defined using the real vs. ideal paradigm. In this
paradigm, we consider the real-world model, in which protocols are executed. We then formulate an ideal
model for executing the task. This ideal model involves a trusted party whose functionality captures the se-
curity requirements from the task. Finally, we show that the real-world protocol “emulates” the ideal-world
protocol: For any real-life adversary A there exists an ideal-model adversary S (called simulator) such that
the global output of an execution of the protocol with A in the real-world model is distributed similarly to
the global output of running S in the ideal model. In both models there are m parties p1, . . . , pm holding a
common input 1n and private inputs y1, . . . , ym, respectively, where yj ∈ Xn for 1 ≤ j ≤ m.

The Real Model. Let Π be an m-party protocol computing F . Let A be a non-uniform probabilistic
polynomial time adversary that gets the input yj of each corrupted party pj and the auxiliary input aux.
Let REALΠ,A(aux)(y⃗, 1

n), where y⃗ = (y1, . . . , ym), be the random variable consisting of the view of the
adversary (i.e., the inputs of the corrupted parties, its random string, the auxiliary input, and the messages it
got) and the output of the honest parties following an execution of Π.

The Ideal Model. The basic ideal model we consider is a model without abort. Specifically, there is an
adversary S which has corrupted a subset B of the parties. The adversary S has some auxiliary input aux.
An ideal execution for the computing F proceeds as follows:

Send inputs to trusted party: The honest parties send their inputs to the trusted party. The corrupted par-
ties may either send their received input, or send some other input of the same length (i.e., xj ∈ Xn)
to the trusted party, or abort (by sending a special “abortj” message). Denote by x1, . . . , xm the
inputs received by the trusted party. If pj does not send a valid input, then the trusted party selects
xj ∈ Xn with uniform distribution.1

Trusted party sends outputs: The trusted party computes fn(x1, . . . , xm) with uniformly random coins
and sends the output to the parties.

1For the simplicity of the presentation of our protocols, we present a slightly different ideal world than the traditional one. In
our model there is no default input in the case of an “abort”. However, the protocol can be presented in the traditional model, where
a predefined default input is used if a party aborts.

8

Outputs: The honest parties output the value sent by the trusted party, the corrupted parties output noth-
ing, and S outputs any arbitrary (probabilistic polynomial-time computable) function of its view (its
inputs, the output, and the auxiliary input aux).

Let IDEALF ,S(aux)(y⃗, 1
n) be the random variable consisting of the output of the adversary S in this

ideal world execution and the output of the honest parties in the execution.

2.2.1 1/p-Indistinguishability and 1/p-Secure Computation

As explained in the introduction, some ideal functionalities for computing F cannot be implemented when
there is no honest majority. We use 1/p-secure computation, defined by [24], to capture the divergence from
the ideal worlds.

Definition 2.1 (1/p-indistinguishability). A function µ(·) is negligible if for every positive polynomial q(·)
and all sufficiently large n it holds that µ(n) < 1/q(n). A distribution ensemble X = {Xa,n}a∈Dn,n∈N
is an infinite sequence of random variables indexed by a ∈ Dn and n ∈ N, where Dn is a domain that
might depend on n. For a fixed function p(n), two distribution ensembles X = {Xa,n}a∈Dn,n∈N and

Y = {Ya,n}a∈Dn,n∈N are computationally 1/p-indistinguishable, denoted X
1/p
≈ Y , if for every non-uniform

polynomial-time algorithm D there exists a negligible function µ(·) such that for every n and every a ∈ Dn,∣∣∣Pr[D(Xa,n) = 1]− Pr[D(Ya,n) = 1]
∣∣∣ ≤ 1

p(n)
+ µ(n).

Two distribution ensembles are computationally indistinguishable, denoted X
C≡ Y , if for every c ∈ N

they are computationally 1
nc -indistinguishable.

We next define the notion of 1/p-secure computation [24]. The definition uses the standard real/ideal
paradigm [17, 9], where we consider a completely fair ideal model (as typically considered in the setting of
an honest majority), and require only 1/p-indistinguishability rather than indistinguishability.

Definition 2.2 (1/p-secure computation [24]). Let p = p(n) be a function. An m(n)-party protocol Π
is said to 1/p-securely compute a functionality F when there are at most t(n) corrupted parties, if for
every non-uniform probabilistic polynomial-time adversary A in the real model controlling at most t(n)
parties, there exists a non-uniform probabilistic polynomial-time adversary S in the ideal model, control-
ling the same parties as A, such that the following two distribution ensembles are computationally 1/p-
indistinguishable{
IDEALF ,S(aux)(y⃗, 1

n)
}
aux∈{0,1}∗,y⃗∈(Xn)m,n∈N

1/p
≈

{
REALΠ,A(aux)(y⃗, 1

n)
}
aux∈{0,1}∗,y⃗∈(Xn)m,n∈N .

We next define statistical distance between two random variables and the notion of perfect 1/p-secure
computation, which implies the notion of 1/p-secure computation.

Definition 2.3 (statistical distance). We define the statistical distance between two random variables A and
B as the function

SD(A,B) =
1

2

∑
α

∣∣∣Pr[A = α]− Pr[B = α]
∣∣∣.

9

Definition 2.4 (perfect 1/p-secure computation). An m-party protocol Π is said to perfectly 1/p-secure
compute a functionality F with at most t(n) corrupted parties if for every non-uniform adversary A in the
real model controlling at most t(n) parties, there exists a polynomial-time adversary S in the ideal model
controlling the same parties, such that for every n ∈ N, for every y⃗ ∈ (Xn)

m, and for every aux ∈ {0, 1}∗

SD
(
IDEALF ,S(aux)(y⃗, 1

n),REALΠ,A(aux)(y⃗, 1
n)
)
≤ 1

p(n)
.

2.3 Security-with-Abort and Cheat-Detection

We next present a definition of secure multiparty computation that is more stringent than standard definitions
of secure computation with abort. This definition extends the definition for secure computation as given by
Aumann and Lindell [2]. Roughly speaking, the definition requires that one of two events is possible: (1)
The protocol terminates normally, and all parties receive their outputs, or (2) Corrupted parties deviate from
the prescribed protocol; in this case the adversary obtains the outputs of the corrupted parties (but nothing
else), and all honest parties are given the identities of some parties that have cheated. The formal definition
uses the real vs. ideal paradigm as discussed in Section 2.2. We next describe the appropriate ideal model.

Execution in the ideal model. Let B ⊆ [m] denote the set of indices of corrupted parties controlled by
an adversary A. The adversary A receives an auxiliary input denoted aux. An ideal execution proceeds as
follows:

Send inputs to trusted party: The honest parties send their inputs to the trusted party. The corrupted
parties may either send their received input, or send some other input of the same length (i.e., xj ∈
Xn) to the trusted party, or cheat (by sending a special “cheatj” message). Denote by x1, . . . , xm
the inputs received by the trusted party. If the trusted party receives a “cheatj” message from at
least one party, then, it sends “cheatj” for each cheated party pj to all honest parties and terminates.

Trusted party sends outputs to adversary: The trusted party computes w ← fn(x1, . . . , xm) and sends
the output w to the adversary.

Adversary instructs the trusted party to continue or halt: A sends either a “continue ” message or
{“cheatj”}j∈J to the trusted party for some set of indices of corrupted parties J ⊆ B. If it sends
a “continue ” message, the trusted party sends w to all honest parties. Otherwise, if the adversary
sends {“cheatj”}j∈J , then the trusted party sends {“cheatj”}j∈J to all honest parties.

Outputs: An honest party always outputs the value w it obtained from the trusted party. The corrupted
parties output nothing. The adversary A outputs any (probabilistic polynomial-time computable)
function of the auxiliary input aux, the inputs of the corrupted parties, and the value w obtained from
the trusted party.

We let IDEALCD
F ,S(aux)(y⃗, 1

n) and REALΠ,A(aux)(y⃗, 1
n) be defined as in Section 2.2 (where in this

case IDEALCD
F ,S(aux)(y⃗, 1

n) refers to the above execution with cheat-detection of F). This ideal model is
different from that of [17] in that in the case of a “cheat”, the honest parties get output “cheatj” for all
the cheated parties and not a ⊥ symbol. This means that the honest parties know at least one identity of the
corrupted party that caused a cheat. This cheat-detection is achieved by most multiparty protocols, including
that of [18], but not all (e.g., the protocol of [20] does not meet this requirement). Using this notation we
define secure computation with abort and cheat-detection.

10

Definition 2.5 (security-with-abort and cheat-detection). Let F and Π be as in Definition 2.2. A protocol Π
is said to securely computeF against at most t(n) corrupted parties with abort and cheat-detection if
for every non-uniform polynomial-time adversaryA in the real model controlling at most t(n) parties, there
exists a non-uniform polynomial-time adversary S in the ideal model controlling the same parties, such that{
IDEALCD

F ,S(aux)(y⃗, 1
n)
}
aux∈{0,1}∗,y⃗∈(Xn)m,n∈N

C≡
{
REALΠ,A(aux)(y⃗, 1

n)
}
aux∈{0,1}∗,y⃗∈(Xn)m,n∈N .

For the simplicity of presentation, we assume that the adversarial behavior is restricted only to prema-
ture aborting. Therefore, in the rest of the paper, we replace the “cheatj” message with the “abortj”
message. We achieve this restriction by using several cryptographic tools such as signatures.

2.4 A Useful Lemma

For analyzing our protocols we need an extension of Lemma 2 from [24]. The lemma considers an abstract
game Γ between a challenger and an (unbounded) adversary A. The game is parameterized by values α, β
and a number of round r. Let D1 and D2 be two arbitrary distributions such that the following inequality
holds:

Pr
z←D2

[
Pr

a←D1

[a = z] ≥ α Pr
a←D2

[a = z]

]
≥ 1− β. (1)

We next define the game Γ(r) as follows:

1. The challenger chooses i⋆ uniformly at random from [r] and then chooses a1, . . . , ar as follows:

• For 1 ≤ i < i⋆, it chooses ai ← D1.

• For i⋆ ≤ i ≤ r, it chooses ai ← D2.

2. The challenger and the adversary A interact in a sequence of at most r rounds. In round i:

• The challenger gives ai to the adversary.

• The adversary responds by an abort instruction that stops the game or by a continue in-
struction that make the game proceed to the next round.

3. A is declared the winner in this game if it aborts in round i⋆.

Let win(r) denote the maximum probability for A to win this type of game.

Lemma 2.6. For any two distributions D1 and D2 satisfying Inequality (1), it holds that win(r) ≤ 1/(αr)+
β.

In Lemma 2 of [24], β = 0. The proof of Lemma 2.6 is similar to the original proof of Lemma 2 of [24].
For completeness, we provider the proof in Appendix A.

Jumping a head, our protocols in this paper have a special i⋆-round and it is essential that the adversary
cannot guess its value with a high probability, thus, we first prove an lower-bound on the value of α and
then, we use Lemma 2.6 to upper-bound the probability of guessing the value of i⋆ in the resulting game.

11

2.5 Cryptographic Tools

We next informally describe two cryptographic tools and one standard cryptographic assumption that appear
in our protocols. Formal definitions can be found in, e.g., [16, 17].

Signature Schemes. Informally, a signature on a message proves that the message was created by its
presumed sender, and its content was not altered. A signature scheme is a triple (Gen, Sign,Ver) containing
the key generation algorithm Gen, which outputs a pair of keys, the signing key KS and the verification key
Kv, the signing algorithm Sign, and the verifying algorithm Ver. We assume that it is infeasible to produce
signatures without holding the signing key. For formal definition see [17].

Secret-Sharing Schemes. An α-out-of-m secret-sharing scheme is a mechanism for sharing data among
a set of parties such that every set of size α can reconstruct the secret, while any smaller set knows nothing
about the secret. In this paper, we use two schemes: the XOR-based m-out-of-m scheme (i.e., in this scheme
α = m) and Shamir’s α-out-of-m secret-sharing scheme [32] which is used when α < m. In both schemes,
for every α − 1 parties, the shares of these parties are uniformly distributed and independent of the secret.
Furthermore, given such α − 1 shares and a secret s, one can efficiently complete them to m shares of the
secret s.

In our protocols we sometimes require that in reconstruction of secret only a single party learns the value
of a secret that is shared among all parties. Since all messages are sent over a broadcast channel, we use two
layers of secret sharing to obtain the above requirements as described below.

Construction 2.7 (secret sharing with respect to a certain party). Let s be a secret taken from some finite
field F. We share s among m parties with respect to a (special) party pj in an α-out-of-m secret-sharing
scheme as follows:

1. Choose shares (s(1), s(2)) of the secret s in a two-out-of-two secret-sharing scheme (that is, select
s(1) ∈ F uniformly at random and compute s(2) = s − s(1)). Denote these shares by maskj(s) and
comp(s), respectively.

2. Compute shares (λ(1), . . . , λ(j−1), λ(j+1), . . . , λ(m)) of the secret comp(s) in an (α−1)-out-of-(m−
1) Shamir’s secret-sharing scheme. For each ℓ ̸= j, denote compℓ(s) = λ(ℓ).

Output:

• The share of party pj is maskj(s). We call this share “pj’s masking share”.

• The share of each party pℓ, where ℓ ̸= j, is compℓ(s). We call this share “pℓ’s complement share”.

In the above scheme, we share the secret s among the parties in P such that only sets of size α that
contain pj can reconstruct the secret. In this construction, for every β < α parties, the shares of these
parties are uniformly distributed and independent of the secret. Furthermore, given such β < α shares and
a secret s, one can efficiently complete them to m shares of the secret s. In addition, given β shares and a
secret s, one can efficiently select uniformly at random a vector of shares competing the β shares to m shares
of s.

12

Trapdoor Permutations. A trapdoor permutation is a collection of permutations that (1) are easy to com-
pute, (2) hard to invert in polynomial time, and, (3) are easy to invert given some additional key. The
existence of trapdoor permutations is a standard cryptographic assumption and it is used in achieving many
cryptographic constructions, e.g., public key encryption and oblivious transfer.

For completeness, we next give an informal definition of trapdoor (one way) permutations. A collection
of trapdoor permutations is a set F = {fi : Di → Di}i∈I where I is a set of finite indices and for every
i ∈ I , fi is a permutation such that (1) (Easy to sample function) There exists a probabilistic polynomial
time (abbreviated as PPT) algorithm Gen which on input 1n outputs (i, ti) where ti is the trapdoor of i,
(2) (Easy to sample domain) There exists a PPT algorithm which on input i ∈ I outputs x ∈ Di, (3)
(Easy to evaluate function) There exists a PPT algorithm A which on inputs i ∈ I and x ∈ Di, computes
A(i, x) = fi(x), (4) (Hard to invert) Every PPT algorithm fails to invert y = fi(x), i where x ∈ Di with a
noticeable probability, and (5) (Easy to invert when trapdoor is known) There exists a PPT algorithm B such
that B(i, ti, fi(x)) = x.

3 Feasibility Results for 1/p-Secure Multiparty Computation

In this section we state our main feasibility results. Our main result asserts that any functionality with a
polynomial size range for a constant number of parties can be 1/p-securely computed in polynomial time
tolerating any number of corrupted (malicious) parties. We next formally state this result.

Theorem 1. Let F be a randomized functionality where m is constant. If enhanced trap-door permutations
exist and d(n) and g(n) (the domain and range size, respectively) are bounded by polynomials, then for any
polynomial p(n) there is an r(n)-round 1/p(n)-secure protocol computing F tolerating up to m(n) − 1

corrupted parties, where r(n) = p(n)2 · (g(n) · d(n)m)O(2m) .
If F is deterministic and d(n) is bounded by a polynomial, then there is an r(n)-round 1/p(n)-secure
protocol for r(n) = p(n)2 · d(n)O(m·2m).

Theorem 2. Let F be an m-party (possibly randomized) functionality. If enhanced trap-door permutations
exist, and if m is constant and the size of the range g(n) is bounded by a polynomial in the security parameter
n, then for any polynomial p(n) there is an r(n)-round 1/p(n)-secure protocol computing F tolerating up

to m− 1 corrupted parties, where r(n) =
(
p(n) · g(n)

)2O(m)

.

We give substantially better protocols secure against an adversary that may corrupt strictly fewer than
two-thirds of the parties. Formally, we prove the following theorem.

Theorem 3. Let F be a (possibly randomized) functionality and t ∈ N be such that m/2 ≤ t < 2m/3.
Let r(n) = p(n) · (2 · d(n)m · g(n) · p(n))2

t

. If r(n) is bounded by a polynomial in n and enhanced trap-
door permutations exist, then there is an r(n)-round 1/p(n)-secure protocol for computing F , tolerating
up to t corrupted parties. Furthermore, if F is deterministic, we let r(n) = p(n) · d(n)m·2t , and obtain an
r(n)-round protocol for computing F , with the same properties and under the same assumptions.

Theorem 4. Let F be an m(n)-party (possibly randomized) functionality. Let t(n) be such that m(n)/2 ≤
t(n) < 2m(n)/3. If enhanced trap-door permutations exist, then for any polynomial p(n) the following
hold:

• If m(n) is constant (hence, t = t(n) is constant) and the size of the range g(n) is bounded by a
polynomial, then there exists an r(n)-round 1/p(n)-secure protocol computing F tolerating up to t
corrupted parties, where r(n) = (2p(n))2

t+1 · g(n)2t .

13

• If F is deterministic and the size of the domain d(n) is bounded by a polynomial, then there exists
an r(n)-round 1/p(n)-secure protocol computing F tolerating up to t(n) corrupted parties, where
r(n) = p(n) · d(n)m(n)·2t(n)

, provided that r(n) is bounded by a polynomial.

The protocols that imply the results of Theorem 4 are presented in Section 4. As implied by the second
item of Theorem 4, the round complexity of our protocol when F is deterministic has only a linear depen-
dency on p(n). Specifically, this protocol has polynomially many rounds even when the number of parties is
0.5 log log n provided that the functionality is deterministic and the size of the domain of inputs is constant.

4 Protocols with Less Than Two-Thirds Corrupted Parties

In this section we describe our protocols that are secure when the adversary corrupts strictly fewer than two-
thirds of the parties. We start with a protocol that assumes that either the functionality is deterministic and
the size of the domain is polynomial, or that the functionality is randomized and both the domain and range
of the functionality are polynomial. We then present a modification of the protocol that is 1/p-secure for
(possibly randomized) functionalities if the size of the range is polynomial (even if the size of the domain of
F is not polynomial). The first protocol is more efficient for deterministic functionalities with polynomial-
size domain. Furthermore, the first protocol has full correctness, while in the modified protocol, correctness
is only guaranteed with probability 1− 1/p.

Following [29, 5], we present the first protocol in two stages. We first describe in Section 4.1 a protocol
with a dealer and then in Section 4.2 present a protocol without this dealer. The goal of presenting the
protocol in two stages is to simplify the understanding of the protocol and to enable us to prove the protocol
in a modular way. In Section 4.3, we present a modification of the protocol that is 1/p-secure if the size of
the range is polynomial (even if the size of the domain of f is not polynomial).

4.1 The Protocol for Polynomial-Size Domain with a Dealer

In this section we assume that there is a special trusted on-line dealer, denoted T . This dealer interacts with
the parties in rounds, sending messages on private channels. We assume that the dealer knows the set of
corrupted parties. In Section 4.2, we show how to remove this dealer and construct a protocol without a
dealer.

In our protocol the dealer sends in each round values to subsets of parties; the protocol proceeds with
the normal execution as long as at least t + 1 of the parties are still active. If in some round i, there are
at most t active parties, then the active parties reconstruct the value given to them in round i − 1, output
this value, and halt. Following [27, 21, 29, 24, 5], the dealer chooses at random with uniform distribution
a special round i⋆. Prior to this round the adversary gets no information and if the corrupted parties abort
the execution prior to i⋆, then they cannot bias the output of the honest parties or cause any harm. After
round i⋆, the output of the protocol is fixed, and also in this case the adversary cannot affect the output of the
honest parties. The adversary can cause harm only if it guesses i⋆ and this happens with small probability.

We next give a verbal description of the protocol. This protocol is designed such that the dealer can be
removed from it in Section 4.2. A formal description of the protocol is given in Figure 1.

At the beginning of the protocol each party sends its input yj to the dealer. The corrupted parties may
send any values of their choice. Let x1, . . . , xm denote the inputs received by the dealer. If a corrupted
party pj does not send an input, then the dealer sets xj to be a random value selected uniformly from the
input domain Xn. In a preprocessing phase, the dealer T selects uniformly at random a special round
i⋆ ∈ {1, . . . , r}. The dealer computes w ← fn(x1, . . . , xm). Then, for every round 1 ≤ i ≤ r and every

14

Inputs: Each party pj holds a private input yj ∈ Xn and the joint input: the security parameter 1n, the
number of rounds r = r(n), and a bound t = t(n) on the number of corrupted parties.

Instructions for each honest party pj: (1) After receiving the “start ” message, send input yj to the
dealer. (2) If the premature termination step is executed with i = 1, then send its input yj to the
dealer. (3) Upon receiving output z from the dealer, output z. (Honest parties do not send any other
messages throughout the protocol.)

Instructions for the (trusted) dealer:

The preprocessing phase:

1. Set D0 = ∅ and send a “start ” message to all parties.

2. Receive an input, denoted xj , from each party pj . For every pj that sends an “abortj”
message, notify all parties that party pj aborted, select xj ∈ Xn with uniform distribution,
and update D0 = D0 ∪ {j}.

3. Let D = D0. If |D| ≥ m− t, go to premature termination with i = 1.

4. Set w ← fn(x1, . . . , xm) and select i⋆ ∈ {1, . . . , r} with uniform distribution.

5. For each 1 ≤ i < i⋆, for each L ⊆ [m]\D0 s.t. m− t ≤ |L| ≤ t: for each j ∈ L set x̂j = xj ,
for each j ̸∈ L select uniformly at random x̂j ∈ Xn, and set σi

L ← fn(x̂1, . . . , x̂m).

6. For each i⋆ ≤ i ≤ r and for each L ⊆ [m] \D0 s.t. m− t ≤ |L| ≤ t, set σi
L = w.

7. Send “proceed ” to all parties.

Interaction rounds: In each round 1 ≤ i ≤ r, interact with the parties in three phases:

• The peeking phase: For each L ⊆ [m] \ D0 s.t. m− t ≤ |L| ≤ t, if QL contains only
corrupted parties, send the value σi

L to all parties in QL.

• The abort phase: Upon receiving an “abortj” message from a party pj , notify all parties
that party pj aborted (ignore all other types of messages) and update D = D ∪ {j}. If
|D| ≥ m− t, go to premature termination step.

• The main phase: Send “proceed ” to all parties.

Premature termination step:

• If i = 1, then: Receive an input, denoted x′
j , from each active party pj . For every party pj

that sends an “abortj” message, update D = D ∪ {j} and select x′
j ∈ Xn with uniform

distribution. Set w′ ← fn(x
′
1, . . . , x

′
m).

• Else, if i > 1, then: For each “abortj” message received from a party pj , update D =
D ∪ {j}. Set w′ = σi−1

L for L = [m] \D.

• Send w′ to each party pj s.t. j /∈ D0 and halt.

Normal termination: If the last round of the protocol is completed, send w to to each party pj s.t. j /∈ D0

.

Figure 1: Protocol MPCWithDLtdr.

15

L ⊂ {1, . . . ,m} such that m− t ≤ |L| ≤ t, the dealer selects an output, denoted σi
L, as follows (this output

is returned by the parties in QL = {pj : j ∈ L} if the protocol terminates in round i + 1 and QL is the set
of the active parties):

CASE I: 1 ≤ i < i⋆. For every j ∈ L the dealer sets x̂j = xj and for every j /∈ L it chooses x̂j indepen-
dently with uniform distribution from the domain Xn; it computes the output σi

L ← fn(x̂1, . . . , x̂m).

CASE II: i⋆ ≤ i ≤ r. The dealer sets σi
L = w.

The dealer T interacts with the parties in rounds, where in round i, for 1 ≤ i ≤ r, there are of three
phases:

The peeking phase. The dealer T sends to the adversary all the values σi
L such that all parties in QL are

corrupted.

The abort and premature termination phase. The adversary sends to T the identities of the parties that
abort in the current round. If there are fewer than t+ 1 active parties, then T sends σi−1

L to the active
parties, where QL is the set of the active parties; the parties can also abort during this phase (see exact
details in Figure 1). The honest parties return this output and halt.

The main phase. If at least t + 1 parties are active, T notifies the active parties that the protocol proceeds
normally to the next round.

If after r rounds there are at least t + 1 active parties, then T sends w to all active parties and the honest
parties output this value.

Example 4.1. As an example, assume that m = 5 and t = 3. In this case the dealer computes a value σi
L

for every set of size 2 or 3. Consider an execution of the protocol where p1 aborts in round 4 and p3 and p4
abort in round 100. In this case, T sends σ99

{2,5} to p2 and p5, which return this output.

The formal proof of the 1/p-security of the protocol appears in Section 4.4. We next hint why for
deterministic functionalities, an adversary can cause harm in the above protocol by at most O(dO(1)/r),
where d = d(n) is the size of the domain of the inputs and the number of parties, i.e., m, is constant. As in
the protocols of [29, 24, 5], the adversary can only cause harm by causing the protocol to terminate in round
i⋆. In our protocol, if in some round there are two values σi

L and σi
L′ that the adversary can obtain such that

σi
L ̸= σi

L′ , then the adversary can deduce that i < i⋆. Furthermore, the adversary might have some auxiliary
information on the inputs of the honest parties; thus, the adversary might be able to deduce that a round is
not i⋆ even if all the values that it gets are equal. However, there are fewer than 2t values that the adversary
can obtain in each round (i.e., the values of subsets of the t corrupted parties of size at least m − t). We
will show that for a round i such that i < i⋆, the probability that all these values are equal to a fixed value is
1/dO(1) for a deterministic function fn (for a randomized functionality this probability also depends on the
size of the range). By Lemma 2.6, this implies that the protocol is dO(1)/r-secure.

4.2 Eliminating the Dealer of the Protocol

We eliminate the trusted on-line dealer in a few steps using a few layers of secret-sharing schemes. First, we
change the on-line dealer, so that, in each round i, it shares the value σi

L of each subset QL among the parties
of QL using a |L|-out-of-|L| secret-sharing scheme – called inner secret-sharing scheme. As in Protocol
MPCWithDLtdr described in Figure 1, the adversary is able to obtain information on σi

L only if it controls

16

all the parties in QL. On the other hand, the honest parties can reconstruct σi−1
L (without the dealer), where

QL is the set of active parties containing the honest parties. In the reconstruction, if an active (corrupted)
party does not give its share, then it is removed from the set of active parties QL. This is possible since in
the case of a premature termination an honest majority among the active parties is guaranteed (as further
explained below).

Next, we convert the on-line dealer to an off-line dealer. That is, we construct a protocol in which the
dealer sends only one message to each party in an initialization stage; the parties interact in rounds using a
broadcast channel (without the dealer) and in each round i each party learns its shares of the ith round inner
secret-sharing schemes. In each round i, each party pj learns a share of σi

L in a |L|-out-of-|L| secret-sharing
scheme, for every set QL such that j ∈ L and m − t ≤ |L| ≤ t (that is, it learns its share of the inner
scheme). For this purpose, the dealer computes, in a preprocessing phase, the appropriate shares for the
inner secret-sharing scheme. For each round, the shares of each party pj are then shared in a 2-out-of-2
secret-sharing scheme, where pj gets one of the two shares (this share is a mask, enabling pj to privately
reconstruct its shares of the appropriate σi

L although messages are sent on a broadcast channel). All other
parties get shares in a t-out-of-(m − 1) Shamir secret-sharing scheme of the other share of the 2-out-of-2
secret sharing. See Construction 2.7 for a formal description. We call the resulting secret-sharing scheme
the outer (t+ 1)-out-of-m scheme (since t parties and the holder of the mask are needed to reconstruct the
secret).

To prevent corrupted parties from cheating, by say, sending false shares and causing reconstruction of
wrong secrets, every message that a party should send during the execution of the protocol is signed in the
preprocessing phase (together with the appropriate round number and with the party’s index). In addition,
the dealer sends a verification key to each of the parties. To conclude, the off-line dealer gives each party
the signed shares for the outer secret-sharing scheme together with the verification key.

A formal description of the functionality of the off-line dealer, called Functionality ShareGenLtd, is
given in Figure 2.

The protocol with the off-line dealer proceeds in rounds. In round i of the protocol, all parties broadcast
their (signed) shares in the outer (t+1)-out-of-m secret-sharing scheme. Thereafter, each party can unmask
the message it receives (with its share in the appropriate 2-out-of-2 secret-sharing scheme) to obtain its
shares in the |L|-out-of-|L| inner secret sharing of the values σi

L (for the appropriate sets QL’s to which the
party belongs). If a party stops broadcasting messages or broadcasts improperly signed messages, then all
other parties consider it as aborted. If m − t or more parties abort, the remaining parties reconstruct the
value of the set that contains all of them, i.e., σi−1

L . If the premature termination occurs in the first round,
then the remaining active parties engage in a fully secure protocol (with honest majority) to compute fn.

The use of the outer secret-sharing scheme with threshold t+1 plays a crucial role in eliminating the on-
line dealer. On the one hand, it guarantees that an adversary, corrupting at most t parties, cannot reconstruct
the shares of round i before round i. On the other hand, at least m − t parties must abort to prevent the
reconstruction of the outer secret-sharing scheme (this is why we cannot proceed after m−t parties aborted).
Furthermore, since t ≤ 2m/3, when at least m− t corrupted parties aborted, there is an honest majority. To
see this, assume that at least m− t corrupted parties aborted. Thus, at most t− (m− t) = 2t−m corrupted
parties are active. There are m− t honest parties (which are obviously active); therefore, as 2t−m < m− t
(since t < 2m/3), an honest majority is achieved when at least m− t parties abort. In this case we can
execute a protocol with full security for the reconstruction.

Finally, we replace the off-line dealer by using a secure-with-abort and cheat-detection protocol comput-
ing the functionality computed by the dealer; that is, Functionality ShareGenLtdr. This is done similarly
to the preprocessing phase in [5], which in turn uses the results of [30, 4]. Obtaining the outputs of this

17

computation, an adversary is unable to infer any information regarding the input of honest parties or the
output of the protocol (since it gets t shares of a (t + 1)-out-of-m secret-sharing scheme). The adversary,
however, can prevent the execution, at the price of at least one corrupted party being detected as a cheater by
all other parties. In such an event, the remaining parties will start over without the detected cheating party.
This goes on either until the protocol succeeds or there is an honest majority and a fully secure protocol
computing fn is executed.

A formal description of the protocol appears in Figure 3. The reconstruction functionality used in this
protocol (when at least m− t parties aborted) appears in Figure 4. The details of how to construct a protocol
secure-with-abort and cheat-detection with O(1) rounds are given in [5].

Comparison with the multiparty coin-tossing protocol of [5]. Our protocol combines ideas from the
protocols of [24, 5]. However, there are some important differences between our protocol and the protocol
of [5]. In the coin-tossing protocol of [5], the bits σi

L are shared using a threshold scheme where the
threshold is smaller than the size of the set QL. This means that a proper subset of QL containing corrupted
parties can reconstruct σi

L. In coin tossing this is not a problem since there are no inputs. However, when
computing functionalities with inputs, such σi

L might reveal information on the inputs of honest parties in
QL, and we share σi

L with threshold |QL|. As a result, we use more sets QL than in [5] and the bias of the
protocol is increased (put differently, to keep the same security, we need to increase the number of rounds
in the protocol). For example, the protocol of [5] has small bias when there are polynomially many parties
and t = m/2. Our protocol is efficient only when there is a constant number of parties. As explained
in Section 7.1, this difference is inherent as a protocol for general functionalities with polynomially many
parties and t = m/2 cannot have a small bias.

4.3 A 1/p-Secure Protocol for Polynomial Range

Using an idea of [24], we modify our protocol so that it will have a small bias when the size of the range of
the functionality F is polynomially bounded (even if F is randomized and has a big domain of inputs). The
only modification is the way that each σi

L is chosen prior to round i⋆: with probability 1/(2p) we choose σi
L

as a random value in the range of fn and with probability 1− 1/(2p) we choose it as in Figure 2. Formally,
in the protocol with the dealer, in the preprocessing phase of MPCWithDLtdr described in Figure 1, we
replace Step (5) with the following step:

• For each i ∈ {1, . . . , i⋆ − 1} and for each L ⊆ [m] \D0 s.t. m− t ≤ |L| ≤ t,

– with probability 1/(2p), select uniformly at random ziL ∈ Zn and set σi
L = ziL.

– with the remaining probability 1− 1/(2p),
1. For every j ̸∈ L select uniformly at random x̂j ∈ Xn and for each j ∈ L, set x̂j = xj .
2. Compute σi

L ← fn(x̂1, . . . , x̂m).

Similarly, in the protocol without the dealer, Protocol MPCLtdr, we replace Step (3) in ShareGenLtdr
(described in Figure 2) with the above step. Denote the resulting protocols with and without the dealer
models by MPCWDPolyRangeLtd and MPCPolyRangeLtdr, respectively.

The idea why this change improves the protocol is that now the probability that all values held by the
adversary are equal prior to round i⋆ is larger, thus, the probability that the adversary guesses i⋆ is smaller.
This modification, however, can cause the honest parties to output a value that is not possible given their
inputs, and, in general, we cannot simulate the case (which happens with probability 1/(2p)) when the
output is chosen with uniform distribution from the range.

18

4.4 Proof of 1/p-Security of the Protocols with a Dealer for Less Than Two-Thirds Cor-
rupted Parties

In this section we prove that our protocol described in Figure 2, which assumes an trusted dealer, is a perfect
1/p-secure implementation of the ideal functionality F . We start by presenting in Section 4.4.1 a simulator
for Protocol MPCWithDLtdr. In Section 4.4.2, we prove the correctness of the simulation by showing the
global output in the ideal-world is distributed within 1/p statistical distance from the global output in the
real-world. In Section 4.4.3, we describe the required modifications to the simulator for the protocol for F
that has a polynomial-size range, and argue that the modified simulation is correct.

4.4.1 The Simulator for Protocol MPCWithDLtdr

We next present a simulator ST for Protocol MPCWithDLtdr, described in Figure 1. Let B be the set of
indices of corrupted parties in the execution.

The simulator ST invokes A on the set of inputs {yj : j ∈ B}, the security parameter 1n, and the auxil-
iary input aux playing the role of the trusted dealer in the interaction with A.

Simulating the preprocessing phase:

1. D0 = ∅.
2. The simulator ST sends a “start ” message to all corrupted parties.

3. ST receives a set of inputs {xj : j ∈ B} that A submits to the computation of the dealer. If A
does not submit an input on behalf of at least one party, i.e., A sends an “abortj” message
for at least one party pj , then, for each aborted party pj , the simulator ST notifies all corrupted
parties that pj aborted and updates D0 = D0 ∪ {j}.

4. ST sets D = D0. If |D| ≥ m− t, the simulator sets i = 1 and proceeds to simulate the
premature termination step.

5. ST selects i⋆ ∈ {1, . . . , r} with uniform distribution.

6. For each i ∈ {1, . . . , i⋆ − 1} and for each L ⊆ B \D0 s.t. m− t ≤ |L| ≤ t do

(a) For each j ∈ [m], if j ∈ L, then ST sets x̂j = xj , else, ST selects uniformly at random
x̂j ∈ Xn.

(b) ST sets σi
L ← fn(x̂1, . . . , x̂m).

7. The simulator ST sends “proceed ” to all corrupted parties.

Simulating interaction rounds: In each round 1 ≤ i ≤ r, the simulator ST interacts in three phases with
the parties {pj : j ∈ B \D0}, i.e., the corrupted parties that are active so far:

• The peeking phase:

– If i = i⋆, the simulator ST sends the set of inputs {xj : j ∈ B \D0} to the trusted party
computing F and receives wS .

– For each L ⊆ B \D0 s.t. m− t ≤ |L| ≤ t do
1. If i ∈ {1, . . . , i⋆ − 1}, the simulator ST sends the value σi

L (prepared in the simulation
of the preprocessing phase) to all parties in QL (i.e., to the adversary).

2. Else, if i ∈ {i⋆, . . . , r}, ST sends the value wS to all parties in QL (i.e., to the adver-
sary).

19

• The abort phase: Upon receiving an “abortj” message from a party pj ,

1. ST notifies all corrupted parties that party pj aborted.
2. ST updates D = D ∪ {j}.
3. If at least m− t parties have aborted so far, that is |D| ≥ m− t, the simulator ST proceeds

to simulate the premature termination step.

• The main phase: ST sends “proceed ” to all corrupted parties.

Simulating the premature termination step:

• If the premature termination step occurred in round i = 1,

– The simulator ST receives a set of inputs
{
x′j : j ∈ B \D

}
that A submits to the compu-

tation of the dealer.
If A does not submit an input on behalf of at least one party pj , i.e., sends an “abortj”
message, then, for each aborted party pj , the simulator S notifies all corrupted parties that
pj aborted and updates D = D ∪ {j}.

– The simulator ST sends the set of inputs
{
x′j : j ∈ B \D

}
to the dealer and receives wS .

• If the premature termination step occurred in round 1 < i < i⋆,

1. Upon receiving an “abortj” message from a party pj , the simulator ST updates D =
D ∪ {j}.

2. The simulator ST sends the set of inputs {xj : j ∈ B} to the trusted party computing F and
receives wS .

• (⋄ If the premature termination step occurred in round i⋆ ≤ i ≤ r, then ST already has wS ⋄)
• ST sends the value wS to each party in {pj : j ∈ B \D0}.

Simulating normal termination: If the last round of the protocol is completed, then ST sends wS to each
party in {pj : j ∈ B \D0}.

At the end of the interaction withA, the simulator outputs the sequence of messages exchanged between the
simulator and the corrupted parties.

4.4.2 Proof of the Correctness of the Simulation for MPCWithDLtdr

In order to prove the correctness of the simulation described in Section 4.4.1, we consider the two random
variables from Section 2.2, both of the form (V,C), where V describes a possible view ofA, and C describes
a possible output of the honest parties (i.e., C ∈ Zn). The first random variable that describes the real world
is REALMPCWithDLtdr,A(aux)(y⃗, 1

n) – an execution of Protocol MPCWithDLtd, where V describes the
view of the adversary A in this execution, and C is the output of the honest parties in this execution. The
second random variable IDEALF ,ST (aux)(y⃗, 1

n) describes the ideal world – an execution with the trusted
party computing F (this trusted party is denoted by TF), where V is the view of the simulator ST in this
execution, and C is the output of the honest parties in this execution. For the rest of this section, we
simplify notations and denote the above two random variables by REAL = (VREAL, CREAL) and IDEAL =
(VIDEAL, CIDEAL), respectively.

We consider the probability of a given pair (v, c) according to the two random variables. We compare
the two following probabilities: (1) The probability that v is the view of the adversary A in an execution of

20

Protocol MPCWithDLtdr and c is the output of the honest parties in this execution, where the probability
is taken over the random coins of the dealer T . (2) The probability that v is the output of the simulator
ST in an ideal-world execution with the trusted party TF and c is the output of the honest parties in this
execution, where the probability is taken over the random coins of the simulator ST and the random coins
of the ideal-world trusted party TF . In Lemma 4.3 we prove the correctness of the simulation by showing
that the two random variables are within statistical distance 1/p.

As the adversary might have some auxiliary information on the inputs of the honest parties and know
the value of fn(x1, . . . , xm), the adversary might be able to deduce that a round is not i⋆ if not all the values
that it gets are equal to this value (or a possible value for randomized functionalities). Specifically, in the
worst case scenario, the adversary knows the inputs of all the honest parties. In the next claim we show a
lower bound on the probability that all the values that the adversary obtains in a round i < i⋆ of Protocol
MPCWithDLtdr are all equal to a fixed value.

Claim 4.2. Let F be a (possible randomized) functionality computed by Protocol MPCWithDLtdr and
d(n) and g(n) be the size of the domain and range, respectively. Fix some inputs x1, . . . , xm and w such
that Pr[fn(x1, . . . , xm) = w] ≥ ϵ for some ϵ > 0. Then, the probability that in a round i < i⋆ all the values
that the adversary sees are equal to the specific w is at least (ϵ/d(n)m)2

t

.
Furthermore, if F is deterministic (thus, Pr[fn(x1, . . . , xm) = w] = 1), then, this probability is at least

(1/d(n)m)2
t
.

Proof. We start with the case of a deterministic functionality F . Recall that x1, . . . , xm are the inputs used
by the dealer to compute w = fn(x1, . . . , xm) and σi⋆

L = w for each L ⊆ [m] s.t. m− t ≤ |L| ≤ t. Let
L be such that the adversary obtains σi

L in round i < i⋆. Recall that x̂1, . . . , x̂m are the inputs used by
the dealer to obtain σi

L; that is, σi
L = fn(x̂1, . . . , x̂m), where x̂j = xj for each j ∈ L and x̂j is selected

uniformly at random from Xn for every j /∈ L. We bound the probability that σi
L = w by the probability

that x̂j = xj for all j /∈ L. The probability that x̂j = xj is 1/d(n). Therefore, the probability that both sets
are the same is (1/d(n))m−|L| > (1/d(n))m.

In each round of the protocol, A obtains the value σi
L for each subset QL s.t. L ⊆ [m] and m− t ≤

|L| ≤ t; therefore, A obtains at most 2t values. For each such two values σi
L and σi

L′ obtained by A in
round i < i⋆, the sets of inputs {x̂j : j /∈ L} and {x̂j : j /∈ L′} are totally independent. Therefore, the
probability that all the values that the adversary sees in round i < i⋆ are equal to w = fn(x1, . . . , xm) is at
least (1/d(n)m)2

t
.

For randomized functionality F , we think of the evaluation of fn(x̂1, . . . , x̂m) as two steps: first x̂j is
randomly chosen from Xn for every j ̸∈ L and then the randomized functionality is evaluated. Therefore,
asA obtains at most 2t values in each round i < i⋆, the probability that all the values that the adversary sees
in each round i < i⋆ are equal to the specific w is at least (1/d(n)m)2

t · ϵ2t .

In the next lemma, we prove the correctness of the simulation by using the previous two lemmas.

Lemma 4.3. Let F be a (possibly randomized) functionality, A be a non-uniform polynomial-time adver-
sary corrupting t < 2m/3 parties in an execution of Protocol MPCWithDLtd, and ST be the simulator
described in Section 4.4.1 (where ST controls the same parties as A). Then, for every n ∈ N, for every
y⃗ ∈ (Xn)

m, and for every aux ∈ {0, 1}∗

SD
(
REALMPCWithDLtdr,A(aux)(y⃗, 1

n),IDEALF ,ST (aux)(y⃗, 1
n)
)
≤ 2g(n)d(n)m/ (r(n))2

t

,

where d(n) and g(n) are the sizes of the range and the domain of F , respectively, and r(n) is the number
of rounds in the protocol.

21

Furthermore, if F is deterministic, then, the statistical distance between these two random variables is
at most (d(n)m)2

t
/r(n).

Proof. Our goal here is to show that the statistical distance between the above two random variables is at
most as described in this lemma. The flow of our proof is as follows.

We first bound the statistical distance between the two random variables by the probability that the
adversary A guesses the special round i⋆. We do this by showing that, conditioned on the event that the
adversary fails to guess round i⋆, the two random variables are identically distributed. Then, we bound the
probability of guessing i⋆ in time using Lemma 2.6 and Claim 4.2.

Observe that, in the simulation, ST follows the same instructions as the trusted party T in Protocol
MPCWithDLtdr, except for two changes. First, ST does not compute the output wS , but rather gets wS

externally from TF . The simulator obtains this value either in the premature termination phase (if i < i⋆) or
in the peeking stage when i = i⋆. The second difference is that in the case of a premature termination, ST
will always use wS as its message to the corrupted parties, while T uses the value from round i⋆ − 1 of the
appropriate subset QL as its message.

We analyze the probabilities of (v, c) in the two random variables according to weather the premature
termination occurred before, during, or after the special round i⋆.

Premature termination before round i⋆. We argue that in this case, both in the real protocol and in the
simulation, the view of A is identically distributed in the two worlds. ST follows the same random process
in interacting with A (before sending the last message in the premature termination) as does T in the real-
world execution. The view of the adversary consists of values that are outputs of evaluations of the function
fn on the same input distributions. The adversary does not learn anything about the inputs of the honest
parties; hence, its decision to abort does not depend on any new information it obtains during the interaction
rounds so far. In addition, in both worlds, the output of the honest parties is the evaluation of the function fn
on the same set of inputs for the active parties and uniformly selected random inputs for the aborted parties.

Premature termination after round i⋆ or never occurs. Here v must contain σi⋆

L for some L, which,
in the real-world execution, is equal to the output value of all sets for any round i > i⋆ (recall that the
output value of the honest parties will be determined by one such value), and in the simulation it equals wS .
Thus, in both scenarios, v must be consistent with i⋆ and with c; hence, v completely determines C. Again,
since ST follows the same random process in interacting with A as does T in the real-world execution the
probabilities are the same.

Premature termination in round i⋆. This is the interesting case, which causes the statistical distance. In
the real world, the output of the honest parties is σi⋆−1

L for some L, while in the ideal world their output
is wS ← fn(x1, . . . , xm). In the first case the output is independent of the adversary’s view, while in the
second case, the view determines the output. Thus, in this case the probabilities of the views are different.
However, we will show that the event of premature termination in round i⋆ happens with small probability.

Since the probabilities of (v, c) in the first two cases are equal, the statistical distance between the two
random variables is bounded by the probability of the adversary guessing i⋆ correctly (before the abort phase
of round i⋆). That is,

SD(IDEAL,REAL) ≤ Pr[Premature termination in round i⋆]. (2)

22

We next use Lemma 2.6 and Claim 4.2 to bound the probability that the adversary guesses i⋆. Let
x1, . . . , xm be the inputs obtained by the dealer in the preprocessing phase of Protocol MPCWithDLtdr.
Let p0 be a parameter specified below. We call an output value w heavy if Pr[w = fn(x1, . . . , xm)] >
1/(p0 · g), otherwise, we call w light (where the probability is taken over the randomness in computing the
functionality). Let Sh and Sℓ be a partition to heavy and light values, respectively.

Observe that since there are at most g possible values of fn(x1, . . . , xm), the probability Pr[w is light],
by the union bound, is at most 1/p0. Next, by Claim 4.2 where ϵ = 1/(p0 · g), the probability that all the
values that the adversary sees in round i < i⋆ are equal to w is at least (1/(dm · p0 · g))2

t
. By Lemma 2.6

with β = 1/p0 and α = (1/(dm · p0 · g))2
t
, the probability that the adversary guesses i⋆ is at most

(dm · p0 · g)2
t
/r+1/p0. We take p0 = r2

−t
/(g · dm) and obtain that the total probability that the adversary

guesses i⋆ is at most
1

p0
+

(dm · p0 · g)2
t

r
≤ 2 · g · d

m

r2−t .

Therefore, by (2), the statistical distance between the two random variables in the randomized case is as
claimed in the lemma.

The case that F is deterministic is simpler. By combining Lemma 2.6 where β = 0 and Claim 4.2 we
get that the probability that A guesses i⋆ is at most (r/d(n)m)2

t
. By applying Equation (2), we get the

bound on statistical distance between the two random variables for the deterministic case as claimed in the
lemma.

4.4.3 The Simulator for the Protocol with the Dealer for Polynomial Range

Lemma 4.4. Let F be a (possibly randomized) functionality. For every non-uniform polynomial-time ad-
versary A corrupting t < 2m/3 parties in an execution of Protocol MPCWDPolyRangeLtd, there exists
a simulator ST in the ideal model that simulates the execution of A (where ST controls the same parties as
A). That is, for every n ∈ N, for every y⃗ ∈ (Xn)

m, and for every aux ∈ {0, 1}∗

SD
(
REALMPCWithDLtdr,A(aux)(y⃗, 1

n), IDEALF ,ST (aux)(y⃗, 1
n)
)
<

(2p(n) · g(n))2
t

r(n)
+

1

2p(n)
,

where g(n) is the size of the range of F; with probability 1/(2p(n)) each value σi
L in round i < i⋆ is

selected uniformly at random from the range, and r(n) be the number of rounds in the protocol.

Proof. The simulators and their proofs for Protocol MPCWDPolyRangeLtd and Protocol MPCWithDLtd
are similar; we only present (informally) the differences between the two simulators and the two proofs.

The modified simulator. Recall that the protocols MPCWithDLtd and MPCWDPolyRangeLtd are
different only in Step (3) of the share generation step. In MPCWDPolyRangeLtd, each value σi

L prior
to round i⋆ is chosen with probability 1/(2p) as a random value from the range of fn and with probability
1−1/(2p) it is chosen just as in Figure 1. There are two modifications to the simulator. The first modification
in the simulator is in Step (6) in the simulation of the preprocessing phase, i.e., in the computation of σi

L for
i < i⋆. The step that replaces Step (6) appears below.

• For each i ∈ {1, . . . , i⋆ − 1} and for each L ⊆ B \D0 s.t. m− t ≤ |L| ≤ t do

1. with probability 1/(2p), select uniformly at random ziL ∈ Zn and set σi
L = ziL.

23

2. with the remaining probability 1− 1/(2p),

(a) For each j ∈ [m], if j ∈ L, then ST sets x̂j = xj , else, ST selects uniformly at random
x̂j ∈ Xn.

(b) ST sets σi
L ← fn(x̂1, . . . , x̂m).

The second modification is less obvious. Recall that both random variables appearing in the lemma contain
the output of the honest parties. In the ideal world, the honest parties always output fn applied to their
inputs. In the real world, in a premature termination in round i < i⋆, with probability 1/(2p), the honest
parties output a random value from the range of fn. It is hard to simulate the output of the honest parties in
first case.2 We simply modify the simulator such that with probability 1/(2p) the simulator returns ⊥, i.e.,
it announces that the simulation has failed. The new premature termination step appears below.

Simulating the premature termination step:

• If the premature termination step occurred in round i < i⋆,

– With probability 1/(2p), for each j ∈ B \D0 send “abortj” to the trusted party comput-
ing F and return ⊥.

– With the remaining probability 1−1/(2p), execute the original simulation of the premature
termination step (appearing in Section 4.4.1).

• Else (i ≥ i⋆), execute the original simulation of the premature termination step (appearing in
Section 4.4.1).

The modified proof. The proof to the simulator for MPCWDPolyRangeLtd remains basically the same,
except for two changes. We first modify Claim 4.2 below and prove a slightly different claim, which changes
the probability of the adversary guessing i⋆.

Claim 4.5. Let g(n) be the size of the range of the (possibly randomized) functionality F computed by
Protocol MPCWDPolyRangeLtdr and w ∈ Zn. Then, the probability that in a round i < i⋆ all the values
that the adversary sees are equal to w is at least (1/2p(n) · g(n))2t .

Proof. According to the protocol, there are two different ways to produce each value σi
L in round i < i⋆: (1)

Compute fn on a set of inputs and a set of uniformly selected values from the domain of the functionality,
and (2) Set σi

L as a uniformly selected value from the range of the functionality. We ignore the first case.
In the second option, with probability 1/2p, the value σi

L is uniformly selected from the range. Hence, the
probability that σi

L is equal to a specific value is at least 1/(2p · g).
It was explained in the proof of Claim 4.2 that in each round of the protocol, A obtains fewer than 2t

values. Therefore, we conclude that the probability that all the values that A obtains in round i < i⋆ are all
equal to w is at least (1/(2p · g))2t .

By applying the Lemma 2.6 we conclude that the probability of the adversary guessing i⋆ correctly in
Protocol MPCWDPolyRangeLtdr is at most (2p · g)2t/r. In the case of a premature termination in round
i < i⋆, with probability 1 − 1/(2p) in both the ideal world and real world, the value that the honest parties
output is the evaluation of fn on the inputs of the active parties and random inputs for the parties that aborted.
However, with probability 1/(2p), if premature termination occurs prior to round i⋆, the output of the honest

2For example, there might not be possible inputs of the corrupted parties causing the honest parties to output such output.

24

parties in Protocol MPCWDPolyRangeLtdr is a random value from the range of fn; the simulator fails to
simulate the execution in this case and outputs ⊥. Thus,

SD(IDEAL,REAL)

≤ Pr[Premature termination in round i⋆] + (1/2p) · Pr[Premature termination before round i⋆]

≤ (2p · g)2t/r + (1/2p).

Therefore, the statistical distance is as claimed.

4.5 Proof of Security for the Protocols without the Dealer

4.5.1 The Simulator for Protocol MPCLtdr

We next prove that Protocol MPCLtdr is a secure real-world implementation of the (ideal) functionality of
Protocol MPCWithDLtdr. By Lemma 4.3, when r(n) is sufficiently large, Protocol MPCWithDLtdr is
a 1/p-secure protocol for F . Thus, together we get that Protocol MPCLtdr is a 1/p-secure protocol for F
according to the definition appears in Section 2.3. We analyze Protocol MPCLtdr in a hybrid model where
there are 3 ideal functionalities:

Functionality ShareGenWithAbortLtdr. This functionality is an (ideal) execution of Functionality
ShareGenLtdr in the secure-with-abort and cheat-detection model. That is, the functionality gets
a set of inputs. If the adversary sends an “abortj” for at least one corrupted party pj , then all
these messages are sent to the honest parties and the execution terminates. Otherwise, Functionality
ShareGenLtdr is executed. Then, the adversary gets the outputs of the corrupted parties. Next, the
adversary decides whether to halt or to continue: If the adversary decides to continue, it sends a
“proceed ” message and the honest parties are given their outputs. Otherwise, the adversary sends
“abortj” for at least one corrupted party pj , and these messages are sent to the honest parties.

Functionality FairMPC. This functionality computes the value fn(x1, . . . , xm). That is, the functional-
ity gets a set of inputs. If a party pj sends “abortj” message then xj selected from Xn with uniform
distribution, computes an output of the randomized functionality fn for them, and gives it to all par-
ties. When this functionality is executed, an honest majority is guaranteed; hence, the functionality
can be implemented with full security (e.g., with fairness).

Functionality Reconstruction. This functionality is described in Figure 4; this functionality is used in
the premature termination step in Protocol MPCLtdr for reconstructing the output value from the
shares of the previous round. When this functionality is executed, an honest majority is guaranteed;
hence, the functionality can be implemented with full security (e.g., with fairness).

We consider an adversary A in the hybrid model described above, corrupting t < 2m/3 of the parties
that engage in Protocol MPCLtdr. We next describe a simulator S interacting with the honest parties in
the ideal-world via a trusted party TMPCWithDLtd executing Functionality MPCWithDLtdr. The simulator
S runs the adversary A internally with black-box access. Simulating A in an execution of the protocol, S
corrupts the same subset of parties as doesA. Denote by B = {i1, . . . , it} the set of indices of the corrupted
parties. At the end of the computation, the simulator outputs a possible view of the real-world adversary A.
To start the simulation, S invokes A on the set of inputs {yj : j ∈ B}, the security parameter 1n, and the
auxiliary input aux.

25

Joint input: The security parameter 1n, the number of rounds in the protocol r = r(n), a bound
t = t(n) on the number of corrupted parties, and the set of indices of aborted parties D0.

Private input: Each party pj , where j /∈ D0, has an input xj ∈ Xn.

Computing default values

1. For every j ∈ D0, select xj with uniform distribution from Xn.

2. Select i⋆ ∈ [r] with uniform distribution and compute w ← fn(x1, . . . , xm).

3. For each 1 ≤ i < i⋆, for each L ⊆ [m] \D0 s.t. m− t ≤ |L| ≤ t,

(a) For each j ∈ L, set x̂j = xj .

(b) For each j ̸∈ L, select uniformly at random x̂j ∈ Xn.

(c) Set σi
L ← fn(x̂1, . . . , x̂m).

4. For each i⋆ ≤ i ≤ r and for each L ⊆ [m] \D0 s.t. m− t ≤ |L| ≤ t, set σi
L = w.

5. Compute (Ksign,Kver)← Gen(1n).

Computing signed shares of the inner secret-sharing scheme

6. For each i ∈ {1, . . . , r} and for each L ⊆ [m] \D0 s.t. m− t ≤ |L| ≤ t,

(a) Create shares of σi
L in an |L|-out-of-|L| secret-sharing scheme for the parties in QL. For each

party pj ∈ QL, let Si,L
j be its share of σi

L.

(b) Sign each share Si,L
j : compute Ri,L

j ← (Si,L
j , i, L, j, Sign((Si,L

j , i, L, j),Ksign)).

Computing shares of the outer secret-sharing scheme

7. For each i ∈ [r], for each L ⊆ [m] \ D0 s.t. m− t ≤ |L| ≤ t, and each j ∈ L,
share Ri,L

j using a (t + 1)-out-of-m secret-sharing scheme with respect to pj as defined in
Construction 2.7: compute one masking share maskj(R

i,L
j) and m − 1 complement shares

(comp1(R
i,L
j), . . . , compj−1(R

i,L
j), compj+1(R

i,L
j), . . . , compm(Ri,L

j)).

Signing the messages of all parties

8. For every 1 ≤ q ≤ m, compute the message mq,i that pq ∈ P broadcasts in round i by con-
catenating (1) q, (2) i, and (3) the complement shares compq(R

i,L
j) produced in Step (7) for

pq (for all L ⊆ [m] \ D0 s.t. m− t ≤ |L| ≤ t and all j ̸= q s.t. j ∈ L), and compute
Mq,i ← (mq,i, Sign(mq,i,Ksign)).

Outputs: Each party pj such that j /∈ D0 receives

• The verification key Kver.

• The messages Mj,1, . . . ,Mj,r that pj broadcasts during the protocol.

• pj’s private masks maskj(R
i,L
j) produced in Step (7), for each 1 ≤ i ≤ r and each L ⊆

[m] \D0 s.t. m− t ≤ |L| ≤ t and j ∈ L.

Figure 2: The initialization functionality ShareGenLtdr.

26

Inputs: Each party pj holds the private input yj ∈ Xn and the joint input: the security parameter 1n,
the number of rounds in the protocol r = r(n), and a bound t = t(n) on the number of corrupted
parties.

Preliminary phase:

1. D0 = ∅

2. If |D0| < m− t,

(a) The parties in {pj : j ∈ [m] \D0} execute a secure-with-abort and cheat-detection protocol
computing Functionality ShareGenLtdr. Each honest party pj inputs yj as its input to the
functionality.

(b) If an abort occurred, i.e., at least one party pj aborts, then for each aborted party pj , set
D0 = D0 ∪ {j}. Afterward, goto Step (2).

(c) Else (no party has aborted), denote D = D0 and proceed to the first round.

3. Otherwise (|D0| ≥ m− t), execute premature termination with i = 1.

In each round i = 1, . . . , r do:

4. Each party pj broadcasts Mj,i (containing its shares in the outer secret-sharing scheme).

5. For every pj s.t. Ver(Mj,i,Kver) = 0 or if pj broadcasts an invalid or no message, then all parties
mark pj as inactive, i.e., set D = D ∪ {j}. If |D| ≥ m− t, execute premature termination.

Premature termination step

6. If i = 1, the active parties use a multiparty secure protocol (with full security) to compute fn: Each
honest party inputs yj and the input of each inactive party is chosen uniformly at random from Xn.
The active parties output the result, and halt.

7. Otherwise,

(a) Each party pj reconstructs Ri−1,L
j , the signed share of the inner secret-sharing scheme pro-

duced in Step (6) of Functionality ShareGenLtdr, for each L ⊆ [m]\D0 s.t. m− t ≤ |L| ≤ t
and j ∈ L.

(b) The active parties execute a secure multiparty protocol with an honest majority to compute
Functionality Reconstruction, where the input of each party pj is Ri−1,L

j for every L ⊆
[m] \D0 s.t. m− t ≤ |L| ≤ t and j ∈ L.

(c) The active parties output the output of this protocol, and halt.

At the end of round r:

8. Each active party pj broadcasts the signed shares Rr,L
j for each L such that j ∈ L.

9. Let L ⊆ [m] \D be the lexicographical first set such that all the parties in QL broadcast properly
signed shares Rr,L

j . Each active party reconstructs the value σr
L, outputs σr

L, and halts.

Figure 3: The m-party protocol MPCLtdr for computing F .

27

Joint Input: The round number i, the indices of inactive parties D, a bound t = t(n) on the number of
corrupted parties, and the verification key, Kver.

Private Input of pj: A set of signed shares Ri−1,L
j for each L ⊆ [m] \ D0 s.t. m− t ≤ |L| ≤ t and

j ∈ L.

Computation:

1. For each pj , if pj’s input is not appropriately signed or malformed, then D = D ∪ {j}.
2. Set L = [m] \D.

3. Reconstruct σi−1
L from the shares of all the parties in QL.

Outputs: All parties receive the value σi−1
L (as their output).

Figure 4: Functionality Reconstruction for reconstructing the output in the premature termination step.

Simulating the preliminary phase:

1. D0 = ∅.
2. The simulator S receives a set of inputs {xj : j ∈ B \D0} that A submits to Functionality

ShareGenWithAbortLtdr.
If a party pj for j ∈ B \D0 does not submit an input, i.e., sends an “abortj” message, then,
for each such abort party pj ,

(a) S sends “abortj” to the trusted party TMPCWithDLtd.
(b) S updates D0 = D0 ∪ {j}.
(c) If |D0| < m− t, then repeat Step (2) of the simulation.
(d) Otherwise (|D0| ≥ m− t), simulate premature termination with i = 1.

3. S prepares outputs for the corrupted parties for Functionality ShareGenWithAbortLtdr: The
simulator S sets σi

L = 0 for every L ⊆ [m] \D0 s.t. m− t ≤ |L| ≤ t and for all i ∈ {1, . . . , r}.
Then, S follows Step (1) and Steps (5)–(8) in the computation of Functionality ShareGenLtdr
(skipping the Steps (2)–(4)) to obtain shares for the parties.3

4. For each party pj s.t. j ∈ B \D0, the simulator S sends to A:

• The verification key Kver.
• The masking shares maskj(R

i,L
j) for each i ∈ {1, . . . , r} and for every L ⊆ [m] \D0 s.t.

m− t ≤ |L| ≤ t and j ∈ L.
• The messages Mj,1, . . . ,Mj,r.

5. If A sends an “abortj” for at least one party pj s.t. j ∈ B \ D0 to S, then, for each such
aborted party pj ,

(a) S sends “abortj” to the trusted party TMPCWithDLtd.
(b) S updates D0 = D0 ∪ {j}.
(c) If |D0| < m− t, then repeat Steps (2)–(5) of the simulation.
(d) Otherwise (|D0| ≥ m− t), go to simulating premature termination with i = 1.

3These shares are temporary and will later be opened for the actual values during the interaction rounds using the properties of
Shamir’s secret-sharing scheme.

28

Otherwise (A sends a “continue ” message to S),

(a) The simulator S denotes D = D0.
(b) The simulator sends xj to TMPCWithDLtd for every j ∈ B \ D0 (and gets as response a

“proceed ” message).

Simulating interaction rounds:
Let J be the collection of subsets L ⊆ B \D0 s.t. m− t ≤ |L| ≤ t. I.e., J is the collection of sets of
indices of active corrupted parties after the simulation of the executions of ShareGenWithAbortLtdr.
To simulate round i for i = 1, . . . , r, the simulator S proceeds as follows:

1. S gets from the trusted party TMPCWithDLtd the values that the corrupted parties see. That is, S
gets a bit τ iL for each L ∈ J .4

2. The simulator S selects shares for the inner secret-sharing scheme for corrupted parties: For
every L ∈ J , the simulator S selects uniformly at random shares of τ iL in an |L|-out-of-|L|
Shamir secret-sharing scheme. Denote these shares by

{
Xi,L

j : pj ∈ QL

}
.

For each pj ∈ QL, let Y i,L
j ← (Xi,L

j , i, L, j,Sign((Xi,L
j , i, L, j),Ksign)).

3. The simulator S selects complementary shares for all honest parties: For every L ∈ J and for
each j ∈ B \D0,

(a) S calculates αj = maskj(R
i,L
j)⊕ Y i,L

j .
(b) S selects uniformly at random m− t shares of αj uniformly at random over all possible

selections of m− t shares that are shares of αj together with the |B \D0| − 1 shares{
compq(R

i,L
j) : q ∈ B \ (D0 ∪ {j})

}
produced in Step (3) in the simulation of the preliminary phase.
(This is possible according to the property of Shamir’s scheme.)
Denote by compq(Y

i,L
j) the complementary share that S selects for the honest party pq for

a party pj s.t. j ∈ (B \D0) ∩ L, where L ∈ J .

4. For party pj and a subset L /∈ J , let compq(R
i,L
j) be the complementary share that was pro-

duced in Step (3) in the simulation of the preliminary phase, i.e., compq(R
i,L
j).

5. Construct signed messages m′q,i for each honest party pq in round i by concatenating:

(a) q.
(b) The round number i.
(c) The complement shares that were described in Step (4) above.
(d) The complement shares compq(Y

i,L
j) for all L ∈ J and for all j ∈ L produced in Step (3)

for pq.

Then, S signs m′q,i, i.e., S computes M ′q,i ← (m′q,i, Sign(m
′
q,i,Ksign)).

6. The simulator S sends all the messages M ′q,i on behalf of each honest party pq to A.

4In Steps (2)–(5), the simulator S constructs the messages of the honest parties in order to allow the corrupted parties in each
L ∈ J to reconstruct τ i

L.

29

7. For every j ∈ B \ D0 s.t. A sends an invalid or no message on behalf of pj , the simulator S
sends “abortj” to TMPCWithDLtd:

(a) D = D ∪ {j}.
(b) If |D| ≥ m− t go to premature termination step.
(c) Otherwise, the simulator S proceeds to the next round.

Simulating the premature termination step:

• If i = 1, then S simulates A’s interaction with Functionality FairMPC as follows:

1. S receives from A the inputs of the active corrupted parties.
2. For every j ∈ B\D: If pj does not send an input, then S sends “abortj” to TMPCWithDLtd

else, S sends pj’s input to TMPCWithDLtd.

• If i > 1, then S simulates A’s interaction with Functionality Reconstruction as follows:

1. S receives from A the inputs of the active corrupted parties, i.e., pj s.t. j ∈ B \D.
2. If an active corrupted party pj does not send an input, or its input is not appropriately signed

or malformed, then S sends “abortj” to TMPCWithDLtd.

• S gets from TMPCWithDLtd a value σ and sends it to A.

• The simulator S outputs the sequence of messages exchanged between S and the adversary A
and halts.

Simulating normal termination at the end of round r:

1. The simulator gets w from the trusted party TMPCWithDLtd.

2. S constructs all the signed shares of the inner secret-sharing scheme for each L ⊆ [m] \D0 s.t.
m− t ≤ |L| ≤ t and for each honest party pj ∈ QL as follows.
For each L /∈ J , the simulator S selects uniformly at random |L \B| shares of w uniformly at
random over all possible selections of |L \B| shares that together with the |L ∩B| given shares{
Ri,L

j : j ∈ B
}

(produced in Step (2) in the simulation of the preliminary phase) are a sharing
of w in an |L|-out-of-|L| secret-sharing scheme.
(This is possible according to the property of Shamir’s scheme.)
Denote these shares by

{
Xr,L

j

}
.

For each share Xr,L
j , the simulator concatenates the corresponding identifying details, and signs

them to obtain: Y r,L
j ← (Xr,L

j , r, L, j,Sign((Xr,L
j , r, L, j),Ksign)).

3. For each honest party pj , the simulator S sends to A the shares Y r,L
j for all subsets L, such that

pj ∈ QL.

4. The simulator S outputs the sequence of messages exchanged between S and the adversary A
and halts.

4.6 Proving the Correctness of Protocol MPCLtdr and Protocol MPCPolyRangeLtdr

We claim that Protocol MPCLtdr is a secure implementation of the (ideal) functionality of the dealer in
Protocol MPCWithDLtdr. That is,

30

Lemma 4.6. Let t < 2m/3. If enhanced trap-door permutations exist, then Protocol MPCLtdr, presented
in Section 4.2, is a computationally secure implementation (with full security) of the dealer functionality in
Protocol MPCWithDLtdr.

In [5], a similar framework to the one used in this paper is used: first a protocol with a dealer for the coin-
tossing problem is presented, and then, a real-world protocol that is a computationally secure implementation
(with full security) of the dealer functionality is described. In [5], a simulator for this protocol is given;
this simulator is similar to the simulator described in Section 4.5.1. Then a full proof for the simulator is
provided. As the proof is very similar to the proof of our simulator, it is omitted.

To conclude the proof, as MPCWithDLtdr is a 1/p-secure implementation of F and MPCLtdr is
a secure implementation of the (ideal) functionality of the dealer in Protocol MPCWithDLtdr, by the
composition theorem of Canetti [9] we conclude that MPCLtdr is a 1/p-secure implementation of F . That
is, Theorem 3 is proved.

Next, we claim that MPCPolyRangeLtdr is a secure implementation of the (ideal) functionality of the
dealer in Protocol MPCWDPolyRangeLtdr. That is,

Lemma 4.7. Let t < 2m/3. If enhanced trap-door permutations exist, then Protocol MPCPolyRangeLtdr,
described in Section 4.3, is a computationally-secure implementation (with full security) of the dealer func-
tionality in Protocol MPCWDPolyRangeLtdr.

Proof. Recall that the only difference between Protocol MPCLtdr and Protocol MPCPolyRangeLtdr is in
the way that the values that the parties see prior to round i⋆ are produced, i.e., the difference is in Function-
ality ShareGenLtdr. Specifically, in Section 4.3 we presented a modification in Step (3) in Functionality
ShareGenLtdr in order to get Protocol MPCLtdr from Protocol MPCPolyRangeLtd. Now, observe
that the simulator presented above does not refer to Step (3) of Functionality ShareGenLtdr in any step.
Therefore, the simulator presented in Section 4.5.1 for Protocol MPCLtdr is also a simulator for Protocol
MPCPolyRangeLtdr.

Claim 4.5 and Lemma 4.7 imply Theorem 4.

5 Protocols for any Number of Corrupted Parties

In this section we describe our protocols that are secure when the adversary can corrupt any number of
parties. We start with a protocol that assumes that either the functionality is deterministic and the size of
the domain is polynomial, or that the functionality is randomized and the size of both the domain and range
of the functionality are polynomial. We then present a modification of the protocol that is 1/p-secure for
(possibly randomized) functionalities if the size of the range is polynomial (even if the size of the domain of
F is not polynomial). The first protocol is more efficient for deterministic functionalities with polynomial-
size domain. Furthermore, the first protocol has full correctness, while in the modified protocol, correctness
is only guaranteed with probability 1− 1/p.

Unlike Section 4, we directly describe our protocol without any trusted dealer. In Section 5.1 we present
the protocol and in Sections 5.2–5.3 we prove its security. The formal description of the protocol appears
in Figures 6–11. In Section 5.4, we present a modification of the protocol that is 1/p-secure if the size of
the range is polynomial (even if the size of the domain of f is not polynomial). The basic structure of both
protocols appears in Figure 5.

For simplicity of the presentation, in the rest of this section, we assume that in the interaction phase of
the protocol the adversary is a fail-stop adversary. That is, all parties follow the protocol with one exception:

31

the corrupted parties may abort the computation at any time. For completeness, in Section 5.1.1 we describe
how to get rid of this assumption using signatures.

5.1 The m-Party Protocol for Polynomial-Size Domain

Figure 5: The basic flow of the m-party protocol.

Recall that the protocol that appears in Section 4 has two phases: The first phase is a preliminary phase
in which the parties compute a given functionality in a secure-with-abort with cheat-detection manner. The
output of this functionality for each party pj includes the messages that pj has to broadcast throughout the
second phase – called the interaction phase. Thus, by the end of the first phase, the parties are prepared for
any possible execution of the interaction phase, i.e., the honest parties can complete r rounds of interactions
regardless of any possible abort of any subset in any round during the protocol. However, the protocol in
this section has two basic phases that have slightly different roles.

Informally, the preliminary phase gives the parties less “direct information” but yet enough information
for a single execution of the interaction phase. To overcome the gap, the combination of a single preliminary
phase followed by a single interaction phase might be executed several times, according to possible aborts
of the adversary. That is, in the first preliminary phase the parties get messages to be sent until the first
abort. If a party aborts, the parties execute another preliminary phase (using information from the previous
preliminary phase) to prepare messages until the next abort, and this process continues until all interaction
rounds are completed.

We next sketch the basic flow of the resulting protocol. At first, the parties compute Functionality
InitShareGenr in a secure-with-abort with cheat-detection model. This functionality gets the parties inputs

32

and gives in return a set of messages for executing the interaction phase. These messages include additional
information which allows the parties to recover from any potential abort. We call this additional information
– “resumption packages”. In the case of an abort in the interaction phase, the parties compute Functionality
ResShareGenr in a secure-with-abort with cheat-detection model; this functionality takes as an input the
corresponding shares of the “resumption packages” that the parties hold and returns to each active party as
an output a set of messages, which are of the same type as described before. These messages are aimed at
executing an additional r-rounds of interactions phase. They are also include, in some sense recursively, a
set of “resumption packages”, which allow the parties to recover from any potential abort in a later stage
of the protocol. It is important to emphasize that both functionalities ResShareGenr and InitShareGenr
return the same output – a set of messages that include the “resumption packages”; however, the latter
functionality takes as an input the original input of the parties, while the former functionality takes as an
input the “resumption packages” that the parties keep learning in each (successful) round of the interaction
phase.

We next describe the protocol in more detail. For simplifying the explanation we assume that m = 3,
i.e., there are 3 parties, any 2 of them can be corrupted. In the first step, the parties execute Functionality
InitShareGenr in a secure-with-abort with cheat-detection model. As a result, for each round i and for each
subset L ⊂ {1, . . . , 3}, a value wi

L is chosen similarly to the way the values in the protocols in Section 4
are chosen. Jumping ahead, this value is related to the parties {pj : j ∈ L} and are used if all other parties
abort in round i + 1. Let us explain how these values are selected. As in our previous protocol, there is a
special round, called i⋆, which is chosen with a uniform distribution from {1, . . . , r}. Prior to round i⋆, the
values that are chosen for each subset depend only on the inputs of the subset: random inputs are chosen for
the parties not in the subset and the function fn is computed with the inputs of the subset and the random
inputs for other parties. Starting from round i⋆, the value of each subset is the output w of fn on the inputs
of all parties.

If no party aborts during the protocol, then each party pj outputs the value wr
{j}. If 2 corrupted parties

abort in some round i, then the third party pj outputs the value wi−1
{j} . The difficult case is when one party,

say p3, aborts in some round i. In this case one of the active parties p1 or p2 might be corrupted. Thus, p1
and p2 execute a 2-party r-round O(1/

√
r)-secure version of the above mentioned 3-party protocol (this is

the 2-party protocol of [24]). As we mentioned before, the protocol is “not given” to the parties in a direct
way, i.e., the parties do not hold a set of messages for all the upcoming rounds; however, p1 and p2 hold the
following information (in a secret shared way), which can turn into an r-round protocol between p1 and p2:
(1) {x1, x2} – the inputs of the remaining parties. (2) i⋆{1,2},i – the special i⋆ value of this (future) protocol.
(3) wi

{1,2} – the output value of this (future) protocol. We call this information “resumption packages” and
we denote it by S{1,2},i. The string S{1,2},i cannot be given directly to p1 and p2; thus, it is being kept in a
secret shared way between the two parties.

We next explain how exactly the “resumption packages” are used to produce messages for a two-party
r-round protocol. The “resumption package” for p1, p2 was generated for the scenario that p3 is corrupted
and at least one of p1, p2 is honest. We next consider the scenario that they are both corrupted (and p3 is
honest). In each round i they can “open” the “resumption packages” as if p3 has aborted. If i⋆{1,2},i > 1,
they conclude that i < i⋆. Thus, they can determine i⋆ and bias the output of the protocol with a high
probability. To overcome this problem, we modify the way that i⋆L,i is chosen prior to round i⋆: with
probability p, to be determined later, set i⋆L,i = 1, and with the remaining probability choose it at random
from {1, . . . , r}. Notice that the “resumption package” that can be opened by p1, p2 in the case i⋆L,i = 1
looks like the “resumption package” in rounds starting from i⋆; thus, by Lemma 2.6, the probability that the
corrupted parties guess i⋆ is O(1/pr). However, a corrupted p2 can bias the protocol by guessing i⋆L,i = 1

33

and aborting in round 1 of the two-party protocol. This can cause an additional bias of at most p. Choosing
p = O(1/

√
r), the total bias of the protocol is O(1/pr) + p = O(1/

√
r); that is, the resulting protocol is

O(1/
√
r)-secure.

The m-party protocols tolerating up to m − 1 corrupted parties use the same structure as our 3-party
protocols. In a preliminary phase, i⋆ and values wi

L for every L ⊂ {1, . . . ,m} are chosen as above. If
some set of parties aborts in some round i, then the remaining parties indexed by |L| execute the |L|-party
protocol that they produce from the “resumption packages”, where if i ≥ i⋆ then it uses i⋆L,i = 1, and

if i < i⋆ then i⋆L,i = 1 with probability r−1/(2
|L|−|L|) and i⋆L,i is random otherwise. In this |L|-party

protocol, if a party aborts, the remaining L′ parties execute an |L′|-party protocol that they produce from the
“resumption packages” (again with its special round being set to 1 with some probability), and so on.

In the above, we only sketched the protocol for 3-parties. The formal description for m-parties appears
in Figures 6–11. The basic structure of both protocols appears in Figure 5. A small modification of this
protocol, yielding a 1/p-secure protocol for polynomial range, appears in Section 5.4. Basically, we use
the same trick used in Section 4.3: With some small probability a value given to the set is chosen from the
range prior to i⋆ in the 3-party interaction and prior to i⋆L,i in the two parties’ protocols. The proof that both
protocols are 1/p-secure appears in Sections 5.2–5.3.

Inputs: Private inputs: Each party pℓ holds the private input yℓ ∈ Xn. Joint input: The security param-
eter 1n and the number of rounds in the protocol r = r(n).

Preliminary phase:

1. L = {1, . . . ,m}.

2. Each party pℓ computes its default value w0
{ℓ}:

(a) pℓ sets x̂ℓ = yℓ and for every j ∈ {1, . . . ,m} \ {ℓ}, selects x̂j with uniform distribution
from Xn.

(b) pℓ sets w0
{ℓ} ← fn(x̂1, . . . , x̂m).

3. The parties execute a secure-with-abort and cheat-detection protocol computing Functionality
InitShareGen (see Figure 7). Each honest party pℓ inputs yℓ as its input to the functionality.
Joint input for the protocol is: L, 1n, and r.

4. If an abort has occurred during the execution of the protocol executed in the previous step, that is,
the output of the honest parties is “ abortj” for at least one index j, then,

(a) For every pj that aborted, all parties mark pj as inactive, i.e., remove j from L.

(b) If only pℓ is active, then pℓ outputs w0
{ℓ} and halts.

(c) Else, go to Step (3).

5. Else, if no abort has occurred, execute the rounds of interaction as described in Figure 9 where each
party holds its private default value, a set of messages, and private shares for r rounds of interaction.

Figure 6: The preliminary phase of the m-party protocol MPCUnLtdr for computing F .

34

Inputs: Private inputs: Each party pℓ holds xℓ ∈ Xn. The joint input: The set of indices of the active
parties L, the security parameter 1n, and the number of rounds r = r(n).

Computing default values and construct the protocol

1. Select i⋆ ∈ {1, . . . , r} with uniform distribution.

2. For each ℓ ∈ L, set ẑℓ = xℓ, for each j ∈ {1, . . . ,m} \ L select uniformly at random
ẑj ∈ Xn, and set σ ← fn(ẑ1, . . . , ẑm).

3. Compute Procedure PrepareResPCKGsAndMSGs (see Figure 8) with
σ,i⋆,L,{xℓ}ℓ∈L, and r and return its outputs.

Output of party pℓ: The output from procedure PrepareResPCKGsAndMSGs, i.e., pℓ gets a set
of messages and private shares for the execution of the r-rounds of interaction.

Figure 7: Functionality InitShareGenr.

5.1.1 Signatures and Verification against any Computational Bounded Adversary

Protocol MPCUnLtdr assumes a fail-stop adversary, i.e., the adversary is only allowed to abort the
computation by not sending any message in a certain round. Such an adversary simplifies the presentation
of the protocol. By several changes to the protocol, the protocol will we be 1/p-secure even in the presence
of any computational bounded adversary, while allowed to attack the protocol in any arbitrary manner. Two
major changes should be made:

Adding signatures In the procedure PrepareResPCKGsAndMSGs, a signing key is produced. Us-
ing this key, all the messages Mi,j and all resumption packages SJ,i are signed by the signing key.
These signatures prevent the adversary from forging messages.

A distributed mechanism for achieving an agreement. Protocol MPCUnLtdr uses two functionalities:
InitShareGenr and ResShareGenr. Recall that in both of them, one of the joint inputs is the
set of active parties indexed by L. This set is updated during an execution of the protocol according
to possible aborts of parties. As we use cheat detection, the honest parties update the set of L in each
step of the protocol. Each party uses its private set of indices L as an input to the relevant protocols.
However, as corrupted parties can input an incorrect set L, we need to modify the definition of the
functionality. As there is no honest majority, the functionality cannot use the most frequent set L.
The key-observation to overcome this problem is that although the corrupted parties might input a
partial or incorrect set of indices, the honest parties agree on the same set. This observation yields
the following modification to the protocols: A verification step should be added to the functionalities
InitShareGenr and ResShareGenr that consists of a check that all the sets inputed by the parties
are equal. If not, the functionality computes for each party pj the minimal index of party pℓ whose
input L does not agree with the input L of pj and returns the index ℓ to pj . Party pj removed ℓ from
the list of active parties. As a result, the honest parties always keep track of the set of active parties
and execute the protocol that implements the relevant functionality with the updated set.

We next prove the security of Protocol MPCUnLtdr. In Section 5.2 we present the simulator for
Protocol MPCUnLtdr and in Section 5.3 we prove its correctness.

35

Inputs: The target value σ, the value i⋆, the set of active parties indexed by L, the inputs of the active
parties {xℓ}ℓ∈L, and the number of rounds r.

Computing default values for “resumption packages”:

1. For each 1 ≤ i < i⋆ and for each J ⊂ L,

(a) With probability r−1/(2|L|−|L|), set i⋆J,i = 1.
With the remaining probability, select i⋆J,i ∈ {1, . . . , r} with uniform distribution.

(b) For each ℓ ∈ J set ẑℓ = xℓ, for each j ∈ {1, . . . ,m}\J select ẑj ∈ Xn uniformly
at random, and set wi

J ← fn(ẑ1, . . . , ẑm).

2. For each i⋆ ≤ i ≤ r and for each J ⊂ L set i⋆J,i = 1 and wi
J = σ.

Computing the shares of the “resumption packages”:
For each 1 ≤ i ≤ r and for each J ⊂ L s.t. |J | ≥ 2,

1. Compute the “resumption package” SJ,i of the set J for the case that parties in L \ J abort
in round i + 1 consisting of:

• {xℓ}ℓ∈J – The inputs of the (future) active parties.
• i⋆J,i – the special i⋆ value for the (future) protocol.

• wi
J – the output value for the (future) protocol.

2. Share SJ,i in an |J |-out-of-|J | secret-sharing scheme for the parties {pℓ : ℓ ∈ J}. For each
ℓ ∈ J , let [SJ,i]ℓ be the share of pℓ of the string SJ,i.

Computing messages for uninterrupted interaction:

Computing the secrets that the party learn in a round:
For each 1 ≤ i ≤ r and for each ℓ ∈ L, construct the string si,ℓ (pℓ learns si,ℓ in round i)
consisting of:

• The default value wi
{ℓ}.

• The shares [SJ,i]ℓ of party pℓ for each J ⊂ L s.t. |J | ≥ 2 and ℓ ∈ J .

Computing the messages that the parties broadcasts in a round
For each 1 ≤ i ≤ r and for each ℓ ∈ L,

1. Share the string si,ℓ in an |L|-out-of-|L| secret-sharing scheme. For each ℓ′ ∈ L, let
[si,ℓ]ℓ′ be the share of pℓ′ of the secret si,ℓ.

2. Set Mi,ℓ ← ([si,ℓ′]ℓ)ℓ̸=ℓ′ (the message that pℓ has to broadcast in round i).

Outputs: Each party pℓ receives

• The messages M1,ℓ, . . . ,Mr,ℓ that pℓ broadcasts during the protocol.

• The private shares [s1,ℓ]ℓ, . . . , [sr,ℓ]ℓ of pℓ.

Figure 8: Procedure PrepareResPCKGsAndMSGs.

36

Inputs: Private inputs: Each party pℓ holds a private default value w0
{ℓ}, a set of messages

M1,ℓ, . . . ,Mr,ℓ, and a set of private shares [s1,ℓ]ℓ, . . . , [sr,ℓ]ℓ.
The joint input: The set of active parties indexed by L, the security parameter 1n, and the number
of rounds in the protocol r.

Rounds of interaction: In each round i = 1, . . . , r do:

1. Each party pℓ broadcasts Mi,ℓ.

2. If an abort occurred, i.e., at least one active party did not send a message, then,

(a) For every pj that aborts, all parties mark pj as inactive, i.e., remove j from L.

(b) If only pℓ is active, then pℓ reconstructs the value wi−1
{ℓ} , outputs it, and halts.

(c) Else (at least 2 parties are active),

i. Each party pℓ extracts wi−1
{ℓ} from si,ℓ and updates its default value: w0

{ℓ} = wi−1
{ℓ} .

ii. The (active) parties execute the procedure MPCUnLtdAfterAbort (see Figure 10),
where each party pℓ holds as its private input the set of its shares of the “resumption
packages” – [SJ,i−1]ℓ for each J ⊆ L s.t. ℓ ∈ L′ and its default value w0

{ℓ}. Joint
input: L, 1n, and r.

At the end of round r: Each active party pℓ reconstructs the value wr
{ℓ}, outputs it, and halts.

Figure 9: The interaction rounds of Protocol MPCUnLtdr.

Inputs: Private inputs: Each party pℓ holds a set of its shares of the “resumption packages” – SJ,ℓ for
each J ⊆ L s.t. ℓ ∈ J and the default value w0

{ℓ}. Joint input: The set of active parties indexed
by L, the security parameter 1n, and the number of rounds in the protocol r.

Preliminary phase:

1. The parties execute a secure-with-abort and cheat-detection protocol for computing Functionality
ResShareGen (see Figure 11). Each party pℓ inputs its share of SL,ℓ – the “resumption package”
for L. In addition, the protocol gets the joint inputs: L, 1n, and r (see Section 5.1.1 for more on
this).

2. If an abort has occurred during the execution of the protocol executed in Step (1), that is, the output
of the honest parties is “ abortj” for at least one index j, then,

(a) For every pj that aborts, all parties mark pj as inactive, i.e., remove j from L.

(b) If only pℓ is active, then the party pℓ outputs the value w0
{ℓ} and halts.

(c) Else, go to Step (1).

3. Else, if no abort has occurred, execute the rounds of interaction as described in Figure 9 where each
party holds its private default value and a set of messages and private shares for the r-rounds of
interaction.

Figure 10: Procedure MPCUnLtdAfterAbort.

37

Inputs: Private input: Each party pℓ holds its share in the “resumption package” – Sℓ.
Joint input: The set of active parties indexed by L, the security parameter 1n, and the number of
rounds r.

Computing default values and construct the protocol:

1. Reconstruct the following values from the shares in {Sℓ}ℓ∈L:

• xℓ for each ℓ ∈ L – The input of each active party pℓ

• i⋆ – The special round i⋆ for the set L
• σ – the prescribed output of L

2. Execute the procedure PrepareResPCKGsAndMSGs (see Figure 8) with
σ,i⋆,L,{xℓ}ℓ∈L and r and return its outputs.

Output party pℓ: The output from procedure PrepareResPCKGsAndMSGs, i.e., pℓ gets a set of
messages and private shares for the execution of the r-rounds of interaction.

Figure 11: Functionality ResShareGenr.

5.2 The Simulator for Protocol MPCUnLtdr

We analyze Protocol MPCUnLtdr in a hybrid model with the following blackbox implementations of
functionalities in the secure-with-abort and cheat-detection model.

• InitShareGenWithAbortr – an implementation of Functionality InitShareGenr.

• ResShareGenWithAbortr – an implementation of Functionality ResShareGenr.

That is, both implementations get a set of inputs according to the descriptions appears in Figure 7 and
Figure 11, respectively. If the adversary sends “ abortj” for at least one corrupted party pj , then these
messages are sent to the honest parties and the execution of the corresponding functionality terminates.
Otherwise, Functionality InitShareGenr or Functionality ResShareGenr is executed, respectively. In
the next step, the adversary gets the outputs of the corrupted parties. Next, the adversary decides whether
to halt or to continue: If the adversary decides to continue, it sends a “ proceed ” message and the honest
parties are given their outputs. Otherwise, the adversary sends “ abortj” for at least one corrupted party
pj , and these messages are sent to the honest parties.

We consider an adversary A in the hybrid model described above. We denote by B the set of indices
of corrupted parties. To start the simulation, S invokes A on the set of inputs {yℓ : ℓ ∈ B}, the security
parameter 1n, and the auxiliary input aux. A brief description of the simulator appears in Figure 12. A
formal description of the simulation follows:

Simulating the preliminary phase of Protocol MPCUnLtdr:
/* Protocol MPCUnLtdr appears in Figure 6. */

1. L = {1, . . . ,m}.
2. The simulator S simulates the interaction ofAwith InitShareGenWithAbortr as follows:

/* This part consists of two main steps: (1) S sees the inputs of the corrupted

parties to InitShareGenWithAbortr, and, (2) S produces the outputs for the active

corrupted parties for Functionality InitShareGenr using the inputs of the previous

step. In addition, S deals with possible aborts is each step. */

38

Simulating the preliminary phase of Protocol MPCUnLtdr:
/* Protocol MPCUnLtdr appears in Figure 6. */

This part of the simulations begins when S receives the inputs of the active corrupted parties to
InitShareGenWithAbortr. If at least one of the parties aborts, this step is repeated. Next,
S produces the outputs for the active corrupted parties for Functionality InitShareGenr using
the inputs of the current step. To do so, S selects some of the unknown information uniformly at
random, i.e.,. the value of i⋆ and the inputs of the honest parties. Given these values, S simply fol-
lows the three computation parts of Procedure PrepareResPCKGsAndMSGs. An important
point to emphasize is that some of the obtained shares are temporary and will later be opened for
the actual values obtained from the trusted party during the interaction rounds using the properties
of Shamir’s secret-sharing scheme.

Simulating interaction rounds for a set of active parties index by L:
/* Corresponds to Figure 9. */

The main part of the simulation is to simulate the messages that the honest parties send to the
corrupted parties in each round of interaction. Prior to round i⋆, it is an easy mission, as all the
values in the system are uniform; thus, a uniform selection of these values is indistinguishable from
the real selection. In round i⋆, the simulator S communicates with the trusted party and receives
the real output of the functionality. The simulator S performs a process of updating the information
that it has from the preliminary phase. This information includes: (1) The default values for each
subset of active corrupted parties, (2) The “resumption packages” for each subset of active corrupted
parties, and (3) The messages that the corrupted parties have to receive from the honest parties. As
we described before, S is able to perform this process using to the properties of Shamir’s secret-
sharing scheme.

Simulating the preliminary phase of Protocol MPCUnLtdAfterAbortr:
/* Protocol MPCUnLtdAfterAbortr appears in Figure 11. */

The simulation of this part is similar to the simulation of the preliminary phase of Protocol
MPCUnLtdr. However, there are two main differences:

1. In the first step, the simulator S receives a set of shares of the “resumption packages” on
behalf of the the corrupted parties and not their inputs.

2. The simulator produces the outputs of the active corrupted parties for InitShareGenr:

• If the i⋆ round has occurred, then S already got the real output σ from the trusted party.
Thus, S produces the output of Procedure PrepareResPCKGsAndMSGs based
on this value.

• If the i⋆ round has not occurred yet, S produces the output of Procedure
PrepareResPCKGsAndMSGs uniformly at random. As before, S is able to per-
form this process by the properties of Shamir’s secret-sharing scheme, although the set
of shares of the corrupted parties is already given.

Figure 12: Sketch of the Simulator.

39

Getting the inputs fromA:
(a) The simulator S receives a set of inputs {xℓ : ℓ ∈ B ∩ L} that the adversaryA submits

to InitShareGenWithAbortr.
Dealing with possible aborts ofA:

(b) If a party pj for j ∈ B∩L does not submit an input, i.e.,A sends an “ abortj” message
on behalf of at least one party pj ; then,

i. For each such aborted party pj , the simulator S notifies all corrupted parties that pj

aborted and updates L = L \ {j}.
ii. Goto Step (3).

Simulating the computation of default values:
(c) S prepares outputs for the corrupted parties for Functionality InitShareGenr:

/* The inputs of the active corrupted parties are already known to S, while

the other inputs are unknown. Therefore, uniformly selected inputs are used

to build the outputs of the functionality. Later on, they are updated with

the correct value. */

i. The simulator S selects i⋆ ∈ {1, . . . , r} with uniform distribution.
ii. For each ℓ ∈ B∩L set ẑℓ = xℓ, for each j ∈ {1, . . . ,m}\ (B∩L) the simulator
S selects uniformly at random ẑj ∈ Xn, and sets σ ← fn(ẑ1, . . . , ẑm).

iii. S follows the three computation parts of Procedure PrepareResPCKGsAndMSGs
with the value of i⋆, the set of inputs {ẑj}1≤j≤m, and the prescribed output of the pro-
tocol σ computed in Step (2(c)i) and Step (2(c)ii).

iv. For each party pℓ s.t. ℓ ∈ B ∩ L, the simulator S sends toA:
• The messages M1,ℓ, . . . ,Mr,ℓ that pℓ broadcasts during the protocol.
• The shares [s1,ℓ]ℓ, . . . , [sr,ℓ]ℓ.

Dealing with possible aborts ofA:
(d) If A sends an “ abortj” for some party pj s.t. j ∈ B ∩ L to S, then, for each such

aborted party pj , the simulator S updates L = L \ {j}.
3. If an abort of at least one party has occurred, then,

• If |L| = 1,

(a) The simulator S sends “ abortj” for each j ∈ B \ L to the trusted party computing
F and receives σ.

(b) The simulator S outputs the sequence of messages exchanged between S and the ad-
versaryA and halts.

• Else, goto Step (2).

4. Else, if no abort has occurred, set gotOutputFromTP = false and goto “Simulating in-
teraction rounds for a set of active parties index by L”.
/* The boolean variable gotOutputFromTP is used to ensure that the S simulator

communicates with the trusted party at most once, as the model requires. */

Simulating interaction rounds for a set of active parties index by L:
/* Corresponds to the part of the protocol appears in Figure 9. */

To simulate round i for i = 1, . . . , r, the simulator S proceeds as follows:

40

/* In each round, the simulator S sends messages on behalf of the honest parties to

the adversary. In round i⋆, the simulator S communicates with the trusted party and

receives the real output of the protocol. */

1. If i = i⋆ and gotOutputFromTP = false,

(a) The simulator S sends the set of inputs {xℓ : ℓ ∈ B ∩ L} and “ abortj” for each j ∈
B \ L to the trusted party computing F and receives σ.

(b) gotOutputFromTP = true.
/* As a result of obtaining the real output σ from the trusted party, S has
to update some of the information that was computed in advance for the rounds
starting from round i⋆. This information includes:

i. The default values for each subset of active corrupted parties.

ii. The ‘‘resumption packages’’, which are based on the default values, also
for each subset of active corrupted parties.

iii. The messages the simulator has to receive from the honest parties.

*/

(c) The simulator S updates the default values:
For each i⋆ ≤ i ≤ r and for each J ⊂ B ∩ L the simulator S sets i⋆J,i = 1 and
wi

J = σ.
(d) The simulator S updates the “resumption packages”:

For each i⋆ ≤ i ≤ r and for each J ⊂ B ∩ L s.t. |J | ≥ 2,
i. The simulator S constructs SJ,i consisting of:

(according to the values from the last step)
• {xℓ}ℓ∈J – The inputs of the (future) active parties.
• i⋆J,i – the special i⋆ value for the (future) protocol.

• wi
J – the output value for the (future) protocol.

ii. The simulator S shares SJ,i in an |J |-out-of-|J | secret-sharing scheme for the parties
{pℓ : ℓ ∈ J}. For each ℓ ∈ J , let [SJ,i]ℓ be the updated share of pℓ of the secret
SJ,i.

(e) The simulator S computes the messages of the honest parties:
/* This is done using the fact that given a set of shares that do not define

a secret (being held by S), it is possible to compute efficiently the missing

shares (for the honest parties). */

i. For each i⋆ ≤ i ≤ r and for each ℓ ∈ B ∩ L, the simulator S constructs the string
si,ℓ that pℓ should reconstruct in round i. I.e,

• The value wi
{ℓ}.

• The shares [SJ,i]ℓ for each J ⊂ B ∩ L s.t. |J | ≥ 2 and ℓ ∈ J .

ii. The simulator S constructs new shares for the honest parties:
For each i⋆ ≤ i ≤ r and for each ℓ ∈ B ∩L let {αℓ}ℓ∈B∩L be the shares prepared
in the simulation of the preliminary phase for the |L|-out-of-|L| secret-sharing scheme
that the corrupted parties hold of the secret si,ℓ.
The simulator S computes |L| − |B ∩ L| shares for the honest parties si,ℓ, given the
shares {αℓ}ℓ∈B∩L that the corrupted parties hold.

41

iii. The simulator S computes the messages that the honest parties have to send in round i:
For each honest party pqh , the simulator S constructs Mi,qh ← ([si,ℓ]qh)ℓ̸=qh,ℓ∈L.

2. For each honest party pqh , the simulator S sends the message Mi,qh on behalf of the pqh toA.

3. IfA sends an “ abortj” for some party pj s.t. j ∈ B ∩ L to S, then,

(a) For each aborted party pj , the simulator S updates L = L \ {j}.
(b) If |L| = 1,

i. The simulator S sends “ abortj” for each j ∈ B \ L to the trusted party computing
F and receives σ.

ii. The simulator S outputs the sequence of messages exchanged between S and the ad-
versaryA and halts.

(c) Else, goto “Simulating the preliminary phase of Protocol MPCUnLtdAfterAbortr”.

Simulating the end of round r for a set of active parties indexed by L:

1. The simulator S outputs the sequence of messages exchanged between S and the adversaryA,
and halts.

Simulating the preliminary phase of Protocol MPCUnLtdAfterAbortr:
/* Protocol MPCUnLtdAfterAbortr appears in Figure 11. */

1. The simulator S simulates the interaction ofAwith ResShareGenWithAbortr as follows:

Getting the inputs fromA:
(a) The simulator S receives a set of shares of the “resumption packages” – SL,ℓ: For each

ℓ ∈ B ∩ L, the simulator S receives the share [SL,i]ℓ that A submits to Functionality
ResShareGenWithAbortr.

Dealing with possible aborts ofA:
(b) If a party pℓ for ℓ ∈ B ∩ L does not submit an input, i.e., A sends an “ abortj” on

behalf of at least one party pj , then,
i. For each such aborted party pj , the simulator S notifies all corrupted parties that pj

aborted and updates L = L \ {j}.
ii. The simulation of the interaction of A with ResShareGenWithAbortr is termi-

nated, i.e., Step (2) below is executed.
Simulating the computation of default values:
(c) S prepares outputs for the corrupted parties for ResShareGenWithAbortr:

/* The inputs of the active corrupted parties are already known to S, while

the other inputs are unknown. Therefore, uniformly selected inputs are used

to build the outputs of the functionality. Later on, during round i⋆, the real

output received they are updated. */

i. For each ℓ ∈ B ∩ L, the simulator S sets ẑℓ = xℓ, for each j ∈ {1, . . . ,m} \
(B ∩ L) the simulator S selects uniformly at random ẑj ∈ Xn.

ii. If the abort for which Protocol MPCUnLtdAfterAbortr is executed occurred
prior round i⋆, then,

42

A. The simulator S selects i⋆ ∈ {1, . . . , r} with uniform distribution and sets σ ←
fn(ẑ1, . . . , ẑm).
/* Observe that the values of i⋆ and σ have already been fixed; however,

S is unable to see them as the shares of the honest parties are needed.

*/

B. S follows the three computation parts of Procedure PrepareResPCKGsAndMSGs
with the value of i⋆, the set of inputs {ẑj}1≤j≤m, and the prescribed output of the
protocol σ computed above in Step (1(c)iiA) and Step (1(c)i).

iii. Else (i⋆ has already occurred), S follows the three computation parts of Procedure
PrepareResPCKGsAndMSGs with i⋆ = 1, the set of inputs {ẑj}1≤j≤m, and
the prescribed output of the protocol σ that was received in Step (1a) from the dealer
in the simulation of the interactive rounds.
/* The set of inputs {ẑj}1≤j≤m might not be compatible with the value σ.

However, the set of inputs {ẑj}1≤j≤m does not have an effect, as all the

values that are computed in Procedure PrepareResPCKGsAndMSGs are equal

to σ. */

iv. For each party pℓ s.t. ℓ ∈ B ∩ L, the simulator S sends toA:
• The messages M1,ℓ, . . . ,Mr,ℓ that pℓ broadcasts during the protocol.
• The shares [s1,ℓ]ℓ, . . . , [sr,ℓ]ℓ.

Dealing with possible aborts ofA:
(d) If A sends an “ abortj” for some party pj s.t. j ∈ B ∩ L to S, then, for each such

aborted party pj , the simulator S updates L = L \ {j}.
2. If the execution of the simulation that appears in Step (1) prematurely terminated, i.e., an abort

of at least one party has occurred, then,

• If |L| = 1,
(a) The simulator S sends “ abortj” for each j ∈ B \ L to the trusted party computing
F and receives σ.

(b) The simulator S outputs the sequence of messages exchanged between S and the ad-
versaryA and halts.

• Else, if |L| > 1, then goto Step (1) in “Simulating the preliminary phase of Protocol
MPCUnLtdAfterAbortr”.

3. Else, if no abort has occurred, goto “Simulating interaction rounds for a set of active parties
index by L”.

5.3 Proof of the Correctness for the Simulation for MPCUnLtdr

We next prove the correctness of the simulation described in Section 5.2. The general structure of the proof is
similar to the one presented in Section 4.4.2. Roughly speaking, we consider the same two random variables
REAL = (VREAL, CREAL) and IDEAL = (VIDEAL, CIDEAL) that we considered in Section 4.4.2.
The variable VREAL describes a possible view ofA in the above hybrid model world, and CREAL describes
a possible output of the honest parties in this world. The random variable VIDEAL describes the output of
the simulator in the ideal world described in Section 2.2 and CIDEAL is the output of the honest parties in
this execution. Our goal is to prove that these two random variables – REAL and IDEAL – are within
statistical distance O(1/p). A more detailed explanation of these variables appears in Section 4.4.2.

43

Recall that we assumed in the beginning of Section 5.1 that an adversary never (successfully) forges a
signature during the execution of the protocol. Therefore, we present the protocol and its simulator without
using signatures, which are briefly described in Section 5.1.1. However, the probability that a polynomial-
time adversary successfully forges a signature for any message is negligible; therefore, the statistical distance
between the random variables REAL and IDEAL can only grow additively by a negligible function
compared to the statistical distance between these two random variables without such an assumption.

We first provide a proof for deterministic functionalities in Section 5.3.1 and then, in Section 5.3.2 we
extend it for randomized functionalities. The corresponding main lemmas are Lemma 5.3 and Lemma 5.10,
in which we prove the correctness of the simulation by showing that the statistical distance between the
two random variables is O(1/p). The general structure of our proof is showing that the statistical distance
between the two random variables is bounded (asymptotically) by the sum of the following two quantities:
(1) The probability of guessing i⋆ on time in the m-protocol. (2) The probability that at least one party
aborts in the m-protocol prior to round i⋆, and then, at least one party aborts in the inner protocol and
i⋆L,i = 1.

In the next claim we show a lower bound on the probability that all the values that the adversary obtains
in a round i < i⋆ of Protocol MPCUnLtdr indicate that it is an i⋆-like round, i.e., all the values wi

J that
the adversary sees are equal to a fixed value and all the values i⋆J,i that the adversary sees are all equal to 1.

Claim 5.1. LetF be a (possibly randomized) functionality computed by Protocol MPCUnLtdr and d(n)
be the size of its domain. Fix some inputs x1, . . . , xm and w such that Pr[fn(x1, . . . , xm) = w] ≥ ϵ
for some ϵ > 0. Then, the probability that in a round i < i⋆ all the values wi

J that the adversary sees are
equal to the specific w and all the values of i⋆J,i that the adversary sees are equal to 1 is at least

1
√
r

(
ϵ

d(n)m

)Ω(2m)

.

Furthermore, if F is deterministic (thus, Pr[fn(x1, . . . , xm) = w] = 1), then, this probability is at
least 1/

(√
r · d(n)m·Ω(2m)

)
.

Proof. We start with the deterministic case. Recall that x̂1, . . . , x̂m are the inputs used to obtain wi
J ; that

is, wi
J = fn(x̂1, . . . , x̂m), where x̂ℓ = xℓ for each j ∈ J and x̂j is selected uniformly at random from

Xn for every j ∈ {1, . . . ,m} \ J . We lower-bound the probability that wi
J = w by the probability that

x̂j = xj for every j ∈ {1, . . . ,m}\J . The probability that x̂j = xj for each j /∈ J is 1/d. Therefore,
the probability that wi

J = w for a specific J ⊆ B is at least (1/d)m−|J| ≥ (1/d)m. As |B| ≤ m−1,
the adversary sees less than 2m−1 values. Thus, the probability that for all J ⊆ B, all the values wi

J are
all equal to w is at least (1/d)m·Ω(2m) .

Next, we bound the probability that in a round i < i⋆ all the values of i⋆J,i that the adversary sees are
equal to 1. Recall that these values are selected independently, where for every J ⊆ B s.t. |J | ≥ 2,
Pr[i⋆J,i = 1] > (1/r)1/(2

|L|−|L|). The adversary sees i⋆J,i for every set J of size at least two that
is contained in B ∩ L. As there is at least one honest party, the adversary sees the values of at most
2|L|−1 − (|L| − 1) ≤ 2|L|−1 − |L| /2 sets. Therefore, the probability that all the values i⋆J,i that the
adversary sees are equal to 1 is at least:

Pr

 ∧
J⊆B:|J|≥2

i⋆J,i = 1

 =
∏

J⊆B:|J|≥2

Pr[i⋆J,i = 1]

≥
(
(1/r)1/(2

|L|−|L|)
)2|L|−1−|L|/2

= 1/
√
r.

44

Therefore, as the values of wi
J are independent of the values of i⋆J,i when i < i⋆, the probability that

in a round i < i⋆ all the values wi
J that the adversary sees are equal to a specific w and all the values of

i⋆J,i that the adversary sees are equal to 1 is at least 1/
(√

r · dm·Ω(2m)
)
.

For randomized functionalityF , the evaluation of fn(x̂1, . . . , x̂m) has two steps: first x̂j is randomly
chosen from Xn for every j ̸∈ L and then the randomized functionality is evaluated. Thus, we first consider
the analysis of the deterministic case and given that in a round i < i⋆ all the values wi

J that the adversary
sees are equal to a specific w and all the values of i⋆J,i that the adversary sees are equal to 1, we analyze the
probability that all the values wi

J that the adversary sees are mapped to the same value. We showed above
thatA obtains fewer than 2m−1 −m values wi

J in each round i < i⋆. Therefore, to get the lower bound
for the randomized case, we can simply multiply the lower bound of the deterministic case by ϵΩ(2m).

5.3.1 Proof for Deterministic Functionalities

Notation 5.2. We say that a protocol for a set of parties indexed by L has a fake-i⋆ if i⋆L,i = 1 as a result
of the first assignment in Step (1a) in Procedure PrepareResPCKGsAndMSGs (see Figure 8).

Observe that i⋆L,i might be equal to 1 also as a result of a uniform selection of i⋆ ∈ {1, . . . , r}, but

we consider only the first case, in which i⋆L,i = 1 with probability r−1/(2|L|−|L|).
In the next lemma, we prove the correctness of the simulation for deterministic functionalities by using

Claim 5.1.

Lemma 5.3. Let F be a deterministic functionality, let A be a non-uniform polynomial-time adversary
corrupting at most m − 1 parties in an execution of Protocol MPCUnLtdr, and let S be the simulator
described in Section 5.2 (where S controls the same parties as A). Then, for every n ∈ N, for every
y⃗ ∈ (Xn)

m, and for every aux ∈ {0, 1}∗,

SD
(
REALMPCUnLtdr,A(aux)(y⃗, 1

n),IDEALF,S(aux)(y⃗,1n)

)
=

dm·O(2m)√
r(n)

,

where d = d(n) is the size of the domain of F , and r(n) is the number of rounds in the protocol.

Proof. Our goal here is to show that the statistical distance between the above two random variables is
at most as stated in Lemma 5.3. In our proof, we will use the following pairs of random variables, which
describe partial executions of the protocol and the corresponding simulation until a certain point of the entire
execution. We assume that each of the following random variables is concatenated by a random variable that
represents the value of i⋆ in the execution. We do not specify the random variable explicitly in the following
description to simplify the notations. When we analyze a specific execution, we can assume that the value
of i⋆ is known.

1. • REALInit and IDEALInit:

Random variables corresponding to execution of Protocol MPCUnLtdr until the end of the pre-
liminary phase. The random variable REALInit contains the messages that the adversary exchanged
with Functionality InitShareGenr. Similarly, the random variable IDEALInit describes the sim-
ulation of InitShareGenWithAbortr and it contains the messages obtained by S.

2. • REALi and IDEALi for 1 ≤ i ≤ r.

45

Random variables corresponding to the execution until the end of the i-th round of Protocol MPCUnLtdr.
For each 1 ≤ i ≤ r − 1, the random variable REALi contains the concatenation of REALInit

that was described above, with the messages that the adversary receives from the honest parties until
the end of round i. Similarly, IDEALi contains a concatenation of IDEALInit with the messages
obtained by the simulator S until the end of round i. Observe that if round number r ends properly,
i.e., no abort has occurred during the entire execution of the protocol, then the honest parties get the
output, and the random variables REALr and IDEALr also contain the output of the honest parties.

3. • REALResi and IDEALResi for 1 ≤ i ≤ r.

Random variables describing the execution until the end of the preliminary phase of the first execu-
tion of Protocol MPCUnLtdAfterAbortr that was executed as a result of an abort in a round
i. Observe that Protocol MPCUnLtdAfterAbortr might be executed several times; however,
we focus only on the first execution of this protocol. The random variable REALResi contains a
concatenation of REALi, where i is the round in which the abort has occurred, with the messages
that the adversary exchanged with Functionality ResShareGenr. Similarly, IDEALResi contains
a concatenation of IDEALi, where i is the round in which the abort has occurred, with the simula-
tion of the first execution of ResShareGenWithAbortr and it contains the messages that were
exchanged between the adversary and the simulator S.

The proof consists of the following informal claims:

1. REALInit and IDEALInit are identically distributed as all the information obtained by the adver-
sary in the execution of InitShareGenr and InitShareGenWithAbortr are shares, which are
totally uniform and independent strings.

2. If no abort has occurred, then, for every 1 ≤ i ≤ r both random variables REALi and IDEALi are
distributed identically. Prior to i⋆, the views in both worlds are independent of the prescribed output.
While, after i⋆, the views in both worlds are consistent with the prescribed output. In addition, the
adversary’s decision to abort before i⋆ is independent of the output. If during the entire execution no
abort has occurred, then, the random variables IDEALr and REALr are distributed identically, as
REALr−1 and IDEALr−1 are distributed identically and in the last round both views are consistent
with the final output, which appears in both random variables.

3. If an abort has occurred, the parties execute Protocol MPCUnLtdAfterAbortr. Similarly to the
explanation of why REALInit and IDEALInit are distributed identically, all the information ob-
tained by the adversary during the execution of ResShareGenr and ResShareGenWithAbortr
are shares, which are uniform and independent strings. Therefore, for each 1 ≤ i ≤ r, the statis-
tical distance between the random variables REALResi and IDEALResi is equal to the statistical
distance between REALi and IDEALi.

4. If an abort of at least one party occurs in round i of Protocol MPCUnLtdr, then, 3 scenarios are
possible:

(a) i = i⋆. In such a case, a constant statistical distance is possible between the two random
variables REAL and IDEAL as in the ideal world the parties already received the output,
while in the real world the parties are asked to execute a protocol that is, informally, independent
of the previous view. However, we use Lemma 2.6 to show that the probably of such scenario is
low, as it is hard to guess the right value of i⋆.

46

(b) i < i⋆. In such a case, both random variables REALResi and IDEALResi are distributed
identically. However, the execution of the protocol continues, i.e., the active parties execute a
protocol, in which the adversary gets “another chance” to cause a statistical distance. We analyze
this scenario conditioned on whether the sub-protocol has a fake-i⋆ or not. If the sub-protocol
has a fake-i⋆, then the adversary can abort in the first round and cause a constant statistical
distance; however, the probably of such a scenario is low. If the sub-protocol does not have a
fake-i⋆, then, the views in both worlds are independent of the prescribed output and the inputs
of the honest parties. Therefore, the executed sub-protocol is independent of all the past seen
values and can be seen as a “new protocol”; thus, the resulting statistical distance can be added to
the original one. By that, we upper-bound asymptotically the statistical distance in the m-party
protocol.

(c) i > i⋆. This case is equivalent to the case in which no additional abort has occurred as the
views in both worlds are both consistent with the prescribed output.

A detailed explanation follows:

The Initialization Step:

Claim 5.4. SD
(
REALInit, IDEALInit

)
= 0.

Proof. The information obtained as a result of executing InitShareGenr and InitShareGenWithAbortr
are shares of the parties in L∩B in an |L|-out-of-|L| Shamir secret-sharing scheme, since there is at least
one honest party in L, the shares that the adversary sees in both cases are uniformly distributed.

An Honest Interaction Step of the Protocol (no Aborts):

Claim 5.5. For each i < i⋆, if no abort occurred until the end of round i, then SD
(
REALi, IDEALi

)
=

0.

Proof. We argue that both in the real protocol and in the simulation, the view ofA is identically distributed
in the two worlds. In the ideal world, S produces a view that is random as there is no value received from
the trusted party. In the real world, the random process is similar and the interaction with A is based on
values that are outputs of evaluations of the function fn on the same input distributions. The adversary does
not learn anything about the inputs of the honest parties; hence, its decision to abort does not depend on any
new information it obtains during the interaction rounds so far.

Claim 5.6. For each i ≥ i⋆, if no abort occurred until the end of round i, then SD
(
REALi, IDEALi

)
=

0.

Proof. In this case, the view must contain the prescribed output of the protocol σ. In the real-world execu-
tion, this value is equal to the output value of all sets for any round i > i⋆ (recall that the output value of the
honest parties is determined by one such value), and in the simulation it equals to the value obtained from
the trusted party. Thus, in both scenarios, the view must be consistent with i⋆ and with the output value;
hence, the view completely determines the output. Since the simulator S follows the same random process
in interacting with A as in the real-world execution and the output is chosen according to the same distri-
bution, the probabilities are the same. Recall that according to the explanation in Section 2.5, the simulator
can compute efficiently the shares of the adversary in order to obtain the right values in each round.

47

Premature abort During the Interaction Rounds: We next consider the cases when an abort occurs.
When an abort of at least one party occurs during the execution of Protocol MPCUnLtdr, the remain-
ing parties compute Functionality ResShareGenr in a secure-with-abort with cheat-detection model, in
which each active party pℓ inputs the corresponding shares of the “resumption packages” – SJ,ℓ for each
J ⊆ L s.t. ℓ ∈ J and the default value w0

{ℓ}. Each active party gets back as an output a set of messages and
a set of private shares for exacting r rounds of interaction. We next prove several claims on the statistical
distance between the random variables in the lemma.

Claim 5.7. SD
(
REALResi, IDEALResi

)
= SD

(
REALi, IDEALi

)
for each 1 ≤ i ≤ r.

Proof. Similarly to Claim 5.4, the information obtained as a result of executing ResShareGenr and
ResShareGenWithAbortr are shares, which are uniformly distributed. Therefore, the statistical dis-
tance between REALi and IDEALi is the same as the statistical distance between REALResi and
IDEALResi as we claim.

For the next claims we need the following notation that explicitly presents the number of active parties.

Notation 5.8. We use IDEALj and REALj to refer to the random variables IDEAL and REAL,
respectively, where j is the number of active parties in the protocol.

Claim 5.9. If an abort has occurred in i < i⋆, then

SD
(
REALm, IDEALm

)
≤ SD

(
REALm−1, IDEALm−1

)
+ r−1/(2m−m).

Proof. If an abort has occurred in i < i⋆, then the remaining parties, indexed by L, execute the |L|-party
protocol using the “resumption packages”. In this protocol the adversary gets another chance to cause a
statistical distance. We consider two cases: (1) The sub-protocol has a fake-i⋆ and (2) The sub-protocol
does not have a fake-i⋆. In the first case, the adversary can abort in the first round and cause a constant
statistical distance, similarly to aborting in round i⋆ in the original protocol. However, the probability that
a sub-protocol has a fake-i⋆ is at most r−1/(2m−m). In the second case, the views in both worlds are
independent of the prescribed output and the inputs of the honest parties; thus, the executed sub-protocol is
independent of all the past. Therefore, in this case, the statistical distance between the two random variables
is upper-bounded by statistical distance between the random variables in an (m− 1)-party protocol.

Claims 5.4–5.7 and Claim 5.9 describe the cases when the statistical distance appears. We next combine
them and upper-bound the statistical distance between IDEALm and REALm.

SD(IDEALm,REALm)

≤ Pr[Aborting prior to round i⋆]
(
SD
(
REALm−1, IDEALm−1

)
+ r−1/(2m−m)

)
+Pr[Aborting in round i⋆] · 1
+Pr[Aborting after round i⋆] · 0. (3)

By Claim 5.1 for deterministic functionalities, the probability of every view of the adversary occurring in a
round i < i⋆ is at least 1/

(√
r · d(n)m·Ω(2m)

)
. By Lemma 2.6 with β = 0, we get that

Pr[Aborting in round i⋆] ≤
√
rd(n)m·O(2m)

r
=

d(n)m·O(2m)

√
r

. (4)

48

By using (4) and the fact that Pr[Aborting prior round i⋆] ≤ 1, we can rewrite (3) as follows:

SD(IDEALm,REALm) ≤ SD(IDEALm−1,REALm−1) + r−1/(2m−m) +
d(n)m·O(2m)

√
r

.

Therefore,

SD(IDEALm,REALm)

≤
m∑
ℓ=2

(
r−1/(2ℓ−ℓ) +

d(n)ℓ·O(2
ℓ)

√
r

)

≤ m · max
2≤ℓ≤m

{
r−1/(2ℓ−ℓ) +

d(n)ℓ·O(2
ℓ)

√
r

}

≤ m ·
(

max
2≤ℓ≤m

{
r−1/(2ℓ−ℓ)

}
+ max

2≤ℓ≤m

{
d(n)ℓ·O(2

ℓ)
√
r

})

≤ m ·
(
r−1/2 +

d(n)m·O(2m)

√
r

)
. (5)

Finally, by assuming that d(n) > 1, we conclude that

SD(IDEALm,REALm) =
dm·O(2m)

√
r

.

5.3.2 Proof for Randomized Functionalities

We next describe the changes that should be made in the claims and their proofs of the deterministic case in
order to obtain a proof for the randomized case. That is, the main difference is the analysis of the probability
to abort in round i⋆. Formally, we next prove the following lemma:

Lemma 5.10. Let F be a (possibly randomized) functionality, let A be a non-uniform polynomial-time
adversary corrupting at most m−1 parties indexed by B in an execution of Protocol MPCUnLtdr, and
let S be the simulator described in Section 5.2 (where S controls the same parties as A). Then, for every
n ∈ N, for every y⃗ ∈ (Xn)

m, and for every aux ∈ {0, 1}∗,

SD(IDEALm,REALm) =
g(n) · d(n)O(m)

r2−m
,

where d(n) and g(n) are the sizes of the range and the domain of F , respectively, and r is the number of
rounds in the protocol.

Proof. We next use Lemma 2.6 and Claim 5.1 to bound the probability that the adversary guesses i⋆. Let
x1, . . . , xm be the inputs obtained by the dealer in the preprocessing phase of Protocol MPCWithDLtdr.
Let p0 be a parameter specified below. We call an output value w heavy if Pr[w = fn(x1, . . . , xm)] >
1/(p0 · g), otherwise, we call w light (where the probability is taken over the randomness in computing
the functionality). Let Sh and Sℓ be a partition to heavy and light values, respectively.

49

Observe that since there are at most g possible values of fn(x1, . . . , xm), the probability that w is
light, by the union bound, is at most 1/p0. Next, by Claim 4.2 where ϵ = 1/(p0 · g), the probability that
all the values wi

L that the adversary sees in round i < i⋆ are equal to w for a heavy w, and the values of
i⋆J,i that the adversary sees are equal to 1 is at least (1/

√
r) (1/(p0 · g · dm))Ω(2m). By Lemma 2.6 with

β = 1/p0 and α = (1/
√
r) (1/(p0 · g · dm))Ω(2m), the probability that the adversary guesses i⋆ it is

at most

1

p0
+

(
(1/
√
r) (1/(p0 · g · dm))Ω(2m)

)−1

r
=

1

p0
+

(p0 · g · dm)O(2m)

√
r

.

We take p0 = r2
−m

/(g · dm) and obtain that the total probability that the adversary guesses i⋆ is at most

1

p0
+

(p0 · g · dm)O(2m)

√
r

=
g · dO(m)

r2−m
.

Therefore, by using Equation (3) from the deterministic case and applying a similar analysis to (5) we obtain
the proof for the lemma.

5.4 A 1/p-Secure Protocol for Polynomial Range

Protocol MPCUnLtdr, described in Section 5.1, is 1/p-secure when either the functionality is determin-
istic and the size of the domain is polynomial, or when the functionality is randomized and both the domain
and range of the functionality are polynomial. In this section, we present a modification of the protocol pre-
sented in Section 5.1 achieving a 1/p-secure protocol for (possibly randomized) functionalities whose size
of the range is polynomial (even if the size of the domain of the functionality is not polynomial). The mod-
ification is similar to the modification in Section 4.3. Only one modification should be made, and it is in the
way that each value wi

J is chosen prior to round i⋆. The main idea is to cause each one of the rounds prior
round i⋆ “to look-like” round i⋆. To achieve this goal, with probability 1/(2p) the values wi

J are chosen
as a random value in the range of fn and with probability 1− 1/(2p), the values are chosen exactly as in
the original protocol described in Figure 8. Formally, in Procedure PrepareResPCKGsAndMSGs de-
scribed in Figure 8, we replace the first step in the “Computing default values” phase with the following step:

Computing default values:

1. For each 1 ≤ i < i⋆ and for each J ⊂ L,

(a) With probability r−1/(2|L|−|L|), set i⋆J,i = 1.
With the remaining probability, select i⋆J,i ∈ {1, . . . , r} with uniform distribution.

(b) • With probability 1/(2p), select uniformly at random zi
L ∈ Zn and set wi

J = zi
L.

• With the remaining probability 1 − 1/(2p), for each ℓ ∈ J set ẑℓ = xℓ, for each j ∈
{1, . . . ,m} \ J select uniformly at random ẑj ∈ Xn, and set wi

J ← fn(ẑ1, . . . , ẑm).

Denote the resulting protocol by MPCUnLtdPolyRanger. As described before, this modification
causes that the probability that all values held by the adversary are equal prior to round i⋆ is higher; thus, the
probability that the adversary guesses i⋆ is smaller. However, in the modified protocol, the honest parties
can output a value that is not possible given their inputs, and, in general, we cannot simulate the case (which
happens with probability 1/(2p)) when the output is chosen with uniform distribution from the range. As
the latter happens with probability 1/(2p), we can ignore this case in the simulation and conclude that the
protocol is 1/p-secure.

50

5.5 Proof of Security for Protocol MPCUnLtdPolyRanger

Lemma 5.11. Let F be a (possibly randomized) functionality. For every non-uniform polynomial-time
adversaryA corrupting at most m − 1 parties in an execution of Protocol MPCUnLtdPolyRanger,
there exists a simulator ST in the ideal model that simulates the execution of A (where ST controls the
same parties asA), such that for every n ∈ N, for every y⃗ ∈ (Xn)

m, and for every aux ∈ {0, 1}∗

SD(IDEALm,REALm) ≤
(2p(n) · g(n))2

m√
r(n)

+
1

2p(n)
,

where g(n) is the size of the range of F .

Proof. The simulators and their proofs for Protocol MPCUnLtdr and the protocol discussed in this sec-
tion - Protocol MPCUnLtdPolyRanger, are similar; we only (informally) present the differences be-
tween the two simulators and the two proofs.

The modified simulator. Recall that the only difference between Protocol MPCUnLtdr and Proto-
col MPCUnLtdPolyRanger is the first step in the “Computing default values” phase in Procedure
PrepareResPCKGsAndMSGs described in Figure 8. In MPCUnLtdPolyRanger, each value
wi

L prior to round i⋆ is chosen with probability 1/(2p) as a random value from the range of fn and with
probability 1− 1/(2p) it is chosen just like in MPCUnLtdr. There are two modifications to the simula-
tor. The first modification in the simulator is in part that “S follows the three computation parts of Procedure
PrepareResPCKGsAndMSGs” that appear in Step (1(c)iiB) and in Step (2(c)iii). These instructions
describe the computation of wi

L for i < i⋆. The modified simulation step appears below.

1. For each 1 ≤ i < i⋆ and for each J ⊂ L,

(a) With probability r−1/(2|L|−|L|), set i⋆J,i = 1.
With the remaining probability, select i⋆J,i ∈ {1, . . . , r} with uniform distribution.

(b) • With probability 1/(2p), select uniformly at random zi
J ∈ Zn and set wi

J = zi
J .

• With the remaining probability 1 − 1/(2p), for each ℓ ∈ J set ẑℓ = xℓ, for each j ∈
{1, . . . ,m} \ J select uniformly at random ẑj ∈ Xn, and set wi

J ← fn(ẑ1, . . . , ẑm).

The second modification is less obvious. Recall that both random variables appearing in the lemma contain
the output of the honest parties. In the ideal world, the honest parties always output fn applied to their
inputs. In the real world, if an abort occurs in round i < i⋆, with probability 1/(2p), the honest parties
output a random value from the range of fn. It is hard to simulate the output of the honest parties in first
case.5 We simply modify the simulator such that with probability 1/(2p) the simulator returns ⊥, i.e., it
announces that the simulation has failed. The formal description of the additional step appears below.

• If at least one active party aborts in round i < i⋆,

– With probability 1/(2p),
1. Send the set of inputs {xℓ : ℓ ∈ B ∩ L} and “ abortj” for each j ∈ B \ L to the

trusted party computing F (and receive σ).
2. Return⊥ and stop the simulation.

– With the remaining probability 1− 1/(2p), proceed with the original simulation.
5For example, there might not be possible inputs of the corrupted parties causing the honest parties to output such output.

51

The modified proof. The proof to the simulator for MPCUnLtdPolyRanger remains basically the
same, except for two changes. We first modify Claim 5.1 and prove a slightly different claim, which changes
the probability of the adversary guessing i⋆.

Claim 5.12. Let g(n) be the size of the range of the (possibly randomized) functionality F computed by
Protocol MPCUnLtdPolyRanger and w ∈ Zn. Then, the probability that in a round i < i⋆ all the
values wi

J that the adversary sees are equal to a specific w and all the values of i⋆J,i that the adversary sees
are equal to 1 is at least equal to w is at least

1
√
r

(
1

2p(n) · g(n)

)2m

.

Proof. According to the protocol, there are two different ways to produce each value wi
J in round i < i⋆:

(1) Compute fn on a set of inputs and a set of uniformly selected values from the domain of the functionality,
and (2) Set wi

J as a uniformly selected value from the range of the functionality. We ignore the first case.
In the second case, with probability 1/2p, the value wi

J is uniformly selected from the range. Hence, the
probability that wi

J is equal to a specific value is at least 1/(2p · g).
As in the proof of Claim 5.1, in each round of the protocol, A obtains less than 2m−1 −m ≤ 2m

values. Therefore, we conclude that the probability that all the values wi
J that A obtains in round i < i⋆

are all equal to w is at least (1/(2p · g))2m
. In addition, all the values of i⋆J,i that the adversary sees

have to be equal to 1; as in Claim 5.1, the probability for that is at least 1/
√
r. By multiplying the two

probabilities, we obtain the claim.

By applying the Lemma 2.6 we conclude that the probability of the adversary guessing i⋆ correctly in
Protocol MPCUnLtdPolyRanger is at most (2p · g)2m

/
√
r. In the case of an abort of at least one

party in round i < i⋆, with probability 1 − 1/(2p) in both the ideal world and real world, the value that
the honest parties output is the evaluation of fn on the inputs of the active parties and random inputs for
the parties that aborted. However, with probability 1/(2p), if an abort of at least one party occurs prior to
round i⋆, the output of the honest parties Protocol MPCUnLtdPolyRanger is a random value from the
range of fn; the simulator fails to simulate the execution in this case and outputs⊥. Thus,

SD(IDEAL,REAL)

≤ Pr[Aborting in round i⋆] + (1/2p) · Pr[Aborting prior round i⋆]

≤
(2p(n) · g(n))2

m√
r(n)

+
1

2p(n)
.

Therefore, the statistical distance is as claimed.

6 Best of Both Worlds – The 1/p Way

We study the question of whether or not it is possible to construct “best of both worlds” protocols, when the
fall-back security guarantee is 1/p-security or 1/p-security-with-abort, which is, informally, 1/p-security
enhanced with ability (of the adversary) to prematurely abort the computation. We investigate whether
protocols with these weaker forms of security are possible when full privacy cannot be guaranteed. In this
section we describe our feasibility results.

52

In Section 6.1 we constructed protocols that guarantee full security whenever fewer than half of the
parties are corrupted, and 1/p-security-with-abort otherwise. In Section 6.2 we design protocols that guar-
antee full security whenever fewer than half of the parties are corrupted, and 1/p-security otherwise. For
both cases, we show that such protocols exist for every functionality F with a constant number of parties
when both domain and range are polynomial in the security parameter. Clearly, any protocol guaranteeing
the requirements of Section 6.2 (i.e., has fall-back 1/p-(full)-security) also guarantees the requirements of
Section 6.1. Nevertheless, the protocols presented in Section 6.1 are simpler and more efficient than the
protocols that we present in Section 6.2. We next formally state the results of this section.

Theorem 5. LetF be an m-party (possibly randomized) functionality. If enhanced trap-door permutations
exist, and if m is constant and the size of the domain d(n) and the size of the range g(n) are bounded by
a polynomial in the security parameter n, then for any polynomial p(n) there is an r(n)-round 1/p(n)-
secure protocol computing F tolerating up to m − 1 corrupted parties and, in addition, guarantees full
security in the presence of an honest majority, where r(n) = p(n)2 · (g(n) · d(n)m)O(2m) . Further-
more, if F is deterministic, we let r(n) = p(n)2 · d(n)O(m2m), and obtain an r(n)-round protocol for
computing F , with the same properties and under the same assumptions.

Theorem 6. LetF be an m-party (possibly randomized) functionality where the size of the domain is d(n)
and the size of the range is g(n), and let p(n) be any polynomial. Let t ∈ N, be such that m/2 ≤
t < 2m/3 and r(n) = p(n) · (2 · d(n)m · g(n) · p(n))2

t

. If r(n) is bounded by a polynomial in
n and enhanced trap-door permutations exist, then there is an r(n)-round m-party 1/p-secure protocol
computing F , tolerating up to t corrupted parties, and in addition guarantees full security in the presence
of an honest majority. Furthermore, if F is deterministic, we let r(n) = p(n) · d(n)m·2t

, and obtain an
r(n)-round protocol for computing F , with the same properties and under the same assumptions.

6.1 Best of Both Worlds – The 1/p-Security-With-Abort Variant

In this section we consider protocols obtaining a best of both worlds type property, with a fall-back secu-
rity guarantee for the case of no honest majority being 1/ poly-security-with-abort. That is, we consider
protocols that guarantee full security whenever fewer than half of the parties are corrupted, and 1/ poly-
security-with-abort otherwise.

We first define the notion of 1/poly-security-with-abort more formally. We say that a protocol is
1/ poly-secure-with-abort if, similarly to Definition 2.2, the ideal and the real world are computationally
1/p-indistinguishable; however, the computation in the ideal world follows the steps of the ideal world of
security-with-abort and cheat-detection (see Section 2.3) with the minor difference that all the “ cheatj”
messages are replaced with the ⊥ sign, indicating that an abort of at least one party occurred without
specifying the identities of any of the aborted parties.

For the sake of being more general, we allow an upper bound t on the number of parties for which the
second guarantee should hold. That is, we allow protocols that for some polynomial p(·) and some t ∈ N
provide the following security properties:

1. If the adversary corrupts fewer than half of the parties, then full security is guaranteed.

2. If the adversary corrupts t′ of the parties, where t′ ≤ t then 1/p-security-with-abort is guaranteed,
for some polynomial p(·).

The previously best known protocol of the best of both worlds type, by Katz [27], had fall-back security of
1/p-security-with-abort. The protocol of [27] works for functionalities with up to exponential size domain

53

and range, and a polynomial number of parties. Our protocols work when the domain is of polynomial size
and the number of parties is constant. However, the fall-back security guarantee of the protocol of [27]
relies on an assumption that the adversary is non-rushing, which, in many cases is unrealistic. Our protocol
is secure even if the adversary is rushing.

We first describe a 3-party protocol achieving the above security requirements (we later sketch how to
generalize it to an m-party protocol). As in all our protocols, we describe a two-phased protocol. The first
phase is a preliminary phase in which the parties compute a given functionality (securely-with-abort with
cheat-detection). The outputs of this functionality include the messages that each party broadcasts through-
out the protocol execution, together with some masking, so that each party can extract some information
(known only to it) from the publicly broadcast messages of the other parties. In the second phase, the parties
interact with each other (via a broadcast channel), using the messages they have been instructed to send
by the output of the preliminary phase. For simplicity of presentation, we assume that in the second phase
the adversary is in the augmented fail-stop6 model. That is, all parties follow the protocol with two excep-
tions: (i) the corrupted parties are able to use different inputs than the inputs specified to them, and (ii) the
corrupted parties can abort the computation at any time. This is without loss of generality, since we have
already demonstrated how to limit the adversary to aborts by signing any message that could ever be sent
in the protocol. Using this assumption, we can omit the discussion regarding the signing of the messages.
In addition, we first describe the protocol assuming that all the parties participate honestly in preliminary
phase.

Let us first give a verbal overview of the 3-party protocol that computes a functionality F . Consider
three parties p1, p2, p3 holding inputs y1, y2, y3 (respectively). In the preliminary phase, the parties en-
gage in a secure-with-abort with cheat-detection protocol, in which output values σi

{a,b} are assigned to
each pair of parties (pa, pb) for each round 1 ≤ i ≤ r in the protocol. Corrupted parties are able to
change their inputs to this functionality; hence, we denote the actual inputs used in this computation by
x1, x2, x3 (specifically, an honest party pj will use xj = yj as its input). The values of the outputs of the
preliminary phase are selected similarly to our previous protocols. I.e., the output w ← F(x1, x2, x3)
is (secretly) computed and a special round 1 ≤ i⋆ ≤ r is (secretly) selected uniformly. The output value
of each pair (pa, pb) and for each round 1 ≤ i < i⋆ is computed by evaluating F on xa, xb and a
randomly selected input x̂c (for party pc, such that, c ̸= a, b); x̂a = xa and x̂b = xb and compute
σi
{a,b} ← F(x̂1, x̂2, x̂3). The output value of each pair (pa, pb) and for each round i⋆ ≤ i ≤ r is set

to the prescribed output of the protocol, i.e., σi
{a,b} ← w.

The outputs of the preliminary phase are a two-layered secret sharing of the above information. The
outer layer is a 3-out-of-3 Shamir secret-sharing scheme of the shares of the inner layer. The inner layer
consists of secret shares for each round i and each pair (pa, pb) in a 2-out-of-2 Shamir secret-sharing
scheme, where the shares are given to parties pa, pb.

In each round of interaction 1 ≤ i ≤ r the parties reconstruct the outer secret-sharing layer, allowing
each party to learn its shares in the inner secret-sharing scheme for each pair to which it belongs (for round
i). We consider two cases:

• If a party pc prematurely aborts in round i, then the remaining two parties pa, pb broadcast their
shares in the inner secret-sharing scheme to reconstruct σi−1

{a,b} (if i = 1, they compute it using a
secure-with-abort protocol). If one of the parties aborts during the reconstruction, then the remaining
party outputs⊥. In addition, if two parties abort prematurely during one of the rounds of the protocol,

6We borrow our terminology from [17] who discussed a model of augmented semi-honest adversaries in which the adversary is
semi-honest, except that it is allowed to change its input to the computation.

54

then the remaining party outputs⊥.

• If the last round was successfully completed, then all parties broadcast all their shares in the inner
secret sharing of σr

{a,b}. If an honest party cannot reconstruct any secret σr
{a,b}, then it outputs⊥.

To verify that the above protocols satisfy the security requirements, we need to consider two cases:

There is an honest majority. In this case, at most one party is corrupted. Thus, the adversary learns noth-
ing before aborting (if a party aborts before the end of round r). This is true, since a single party can
learn nothing about the secrets of the inner 2-out-of-2 secret-sharing scheme of each round i. Further-
more, these shares are never reconstructed before the end of round r, unless the corrupted party aborts
(before the reconstruction). In addition, the remaining (honest) two parties can always reconstruct the
secret of the inner secret-sharing scheme, and, hence, output a correct value.

There is no honest majority. In this case, there are two corrupted parties. We first analyze the case where
the two corrupted parties do not abort in the same round. We claim that the adversary can only
cause problems (for the simulator) by aborting in round i∗. However, the probability of the adversary
guessing i∗ is limited by the size of the domain times the number of rounds in the protocol. The exact
analysis is almost identical to the one appearing in the two-party protocol of [24] (for polynomial
size domain). This is because the adversary here has a very similar view to an adversary in the two-
party protocol of [24], since in each round of the protocol it learns a single output of the functionality
(which before round i⋆ is independent of the honest party’s input, and from i⋆ and on is fixed).
The probability of guessing the value of i⋆ is 1/p, and thus, the probability of causing constant
computation distance is bounded by 1/p, therefore, in this case the protocol is “only” 1/p-secure.
In the case where the two corrupted parties abort in the same round, the honest party outputs⊥. The
worst scenario is when one party, say p3, aborts in round i⋆ and another party, say p2, does not
send its share of round i⋆ − 1. In this case, the adversary learns two values of the function, that is,
F(x1, x2, x3) andF(x̂1, x2, x3), while the honest party learns no output and outputs⊥. However,
as the probability of guessing i⋆ is at post 1/p, the resulting protocol is 1/p-secure-with-abort.

Dealing with Premature Aborts During the Preliminary Phase. Recall that in the description above
we do not consider the case where one or two of the parties abort during (or before) the preliminary phase.
If only one party aborts, then the remaining two parties simply execute a constant round secure-with-abort
protocol for computing F (directly), e.g., the protocols of [30, 4], where the protocol selects uniformly at
random an input for the third party. If an additional abort occurs during this protocol, then the remaining
party outputs ⊥. In the other case, where two parties abort during the preliminary phase, the remaining
party outputs ⊥. To verify that security requirements hold in the scenario of premature termination during
the preliminary phase, we observe that in the case of honest majority, the remaining two parties are honest;
thus, any protocol that keeps the privacy of the inputs will suffice. In the other case, if there is no honest
majority, outputting⊥ meets the requirements of the security definition.

We next describe the generalization of the 3-party protocol described above to an m-party protocol. The
basic structure of the m-protocol remains the same as in 3-party protocol, but the following changes should
be made.

55

1. Assign values to sets of size ⌊m/2 + 1⌋. The protocol in the preliminary phase assigns a value σi
J

for each set of parties indexed by J where |J | = ⌊m/2⌋ + 1. For each round 1 ≤ i < i⋆, each
value σi

J is computed by evaluatingF on the input xj of pj for each j ∈ J and a randomly selected
input x̂ℓ for each ℓ ̸∈ J . For each round i⋆ ≤ i ≤ r, each value σi

J is equal to the evaluation of F
on the set of all the inputs of the parties.

2. Different thresholds. The inner layer is a (⌊m/2⌋+1)-out-of-(⌊m/2⌋+1) Shamir secret-sharing
scheme, while the outer layer is a (⌊m/2⌋+ 2)-out-of-m Shamir secret-sharing scheme.

3. Keep reconstructing the outer secret-sharing layer as long as possible. In each round of interaction
1 ≤ i ≤ r, the parties try to reconstruct the outer secret-sharing layer. If there are enough valid
shares, i.e., there are at least ⌊m/2⌋ + 2 active parties that broadcast valid shares, then the parties
move to the next round. If there are ⌊m/2⌋ + 1 active parties, the set of active parties reconstructs
their corresponding value from the last round. If there are less that ⌊m/2⌋+1 active parties or if not
all active parties send their shares in the reconstruction, then all active parties output⊥. In any case,
the active parties keep a list of the aborted parties and once a party gets into this list, it is treated as an
aborted party through the entire protocol.

4. Dealing with aborts in the preliminary phase. If fewer than m−(⌊m/2⌋+2)+1 = ⌈m/2⌉−1
parties abort during (or before) the preliminary phase, i.e., there are enough active parties to recon-
struct the outer secret-sharing scheme, the functionality of the protocol in the first phase selects inputs
for the aborted parties uniformly at random and continues with the prescribed instructions. Else,
if exactly ⌈m/2⌉ + 1 active parties abort the preliminary phase, the remaining parties execute a
secure-with-abort protocol for computing the F (directly), where the protocol selects uniformly at
random inputs for the aborted parties. If an additional abort occurs during this protocol or more than
⌈m/2⌉+ 1 active parties abort in the preliminary phase, then the remaining parties output⊥.

6.2 Best of Both Worlds – The 1/p-(full)-Security Variant

In this section we show how to transform 1/p-secure protocols of a certain type into protocols that retain
the same security for the case of no honest majority, while guaranteeing full security whenever fewer than
half of the parties executing the protocol are corrupted. Intuitively, the transformation works if the original
protocol has full security against a weaker adversary that can only abort at the beginning of each round (i.e.,
before seeing the messages of the honest parties for this round); that is, we require that in each round either
everyone sends a message or no one does. Specifically, this transformation can be applied to all protocols
in this paper that have full correctness. Note that protocols that do not have full correctness (at least for the
case of an honest majority) do not guarantee full security for the case of an honest majority.

The basic structure of protocols that can be transformed. For simplicity of presentation we first present
our transformation considering protocols with a certain structure. Later we argue that if the original protocol
satisfies the structural requirements, and, in addition, satisfies some definition of security (i.e., is 1/ poly-
secure and the adversary must use the rushing property to gain advantage), then the resulting protocol has
full security when a majority of the parties are honest (while preserving the original security guarantees
when only a minority of the parties are honest). Consider an m-party protocol for computing a functionality
F that has the following structure:

56

1. The interaction starts with a preliminary phase in which the parties execute a secure-with-abort with
cheat-detection protocol for computing the messages that the parties are to send in the next r interac-
tion rounds; after this phase, each party pj holds a (signed) message M i

j for each round 1 ≤ i ≤ r.

2. In each interaction round i each party pj broadcasts the message M i
j .

3. Any failure of party pj to broadcast the signed message as prescribed by the protocol is considered
as an abort of pj . The adversary can cause the protocol to prematurely terminate by instructing
some tA < ⌈m

2
⌉ corrupted parties to abort. Unless premature termination takes place, the protocol

proceeds normally (that is, as long as fewer than tA of parties have aborted).

In the case of premature termination, the remaining parties engage in a protocol ΠTERM for agreeing
on the output of the protocol, based on the view of the parties in the protocol so far. More specifically,
the decision on the output is based on the outputs of the (remaining) parties from the preliminary
phase, on the messages broadcast until round i− 1, and on the set of parties that have aborted.

The transformation. We present a general transformation for protocols having the above structure. The
core of the change is a mask we add to the messages of the parties in each round. This mask is shared
in a (

⌊
m
2

⌋
+ 1)-out-of-m secret-sharing scheme. Hence, the messages of the parties are disclosed in the

original protocol if and only if a majority of the parties work together to reconstruct the appropriate masks.
Below we explain this change in more detail.

1. We change the output of the preliminary phase by adding a mask to the output of the computation,
which is shared in an (

⌊
m
2

⌋
+1)-out-of-m Shamir secret-sharing scheme. More specifically, for each

message M i
j (for party pj and round i) we select a random string rij , and we let M̂ i

j = M i
j ⊕ rij be

the message that party pj is instructed to broadcast in round i. In addition, each party also receives
a share of rij in a (

⌊
m
2

⌋
+ 1)-out-of-m Shamir secret-sharing scheme. The message M̂ i

j and the
shares of its mask rij are all signed.

2. Each interaction round of the original protocol is executed in a two-phased round. In the first phase,
each party pj broadcasts the message M̂ i

j . In the second phase, the parties reconstruct all masks of
round i by broadcasting all shares of masks rij , for 1 ≤ j ≤ m.

3. Any failure of party pj to broadcast the signed message as prescribed by the protocol is considered as
an abort of pj (including messages added by the transformation).

The adversary can cause the protocol to prematurely terminate by instructing at least tA (where
tA < ⌈m

2
⌉) corrupted parties to abort. Unless premature termination takes place, the protocol

proceeds normally. We consider three possible cases for premature termination in round i, depending
on whether premature termination occurs in the first or second phase of round i and on whether the
reconstruction of the masks (in the second phase) is successful or not:

Premature termination in first phase: The remaining parties behave as if the original protocol was
terminated at the beginning of round i. That is, they engage in a protocol ΠTERM for agreeing
on the output of the protocol, based on the messages broadcast until round i− 1 and on the set
of parties that have aborted D.

Premature termination in second phase – unsuccessful mask reconstruction: The remaining par-
ties behave as if the original protocol was terminated at the beginning of round i. Intuitively,

57

since the masks are not reconstructed the parties do not obtain the full view of the respective
execution of the original protocol until round i, and hence agree on the output as implied by the
view until round i− 1 (as in the former case).

Premature termination in second phase – successful mask reconstruction: The remaining parties
behave as if the original protocol was terminated at the beginning of round i + 1. Intuitively,
since the masks are reconstructed, the parties obtained the full view of the respective execution
of the original protocol until round i. Hence, they engage in a protocol ΠTERM for agreeing
on the output of the protocol, based on the messages broadcast until round i (and on the set of
parties that have aborted D).

The security requirements on the original protocol. Consider protocols that in addition to having the
above structure, also satisfy the following requirements:

1. The outputs of the preliminary phase obtained by corrupted parties reveal nothing to the adversary
about the output of the protocol, and, thus, while the adversary can cause this phase to fail, this does
not affect the security of the whole protocol. E.g., in our protocols this is obtained by the output of
the preprocessing phase being shared among the parties in a (t+1)-out-of-m secret-sharing scheme,
where t is an upper bound on the number of malicious parties.

2. The premature termination protocol ΠTERM is fully secure whenever it is executed with an honest
majority.

3. If the adversary is limited to terminating the protocol at the beginning of each interaction round (before
seeing the messages that honest parties send in this round), then the security of the whole protocol is
reduced to the security of the premature termination protocol ΠTERM.

4. The protocol is 1/p-secure against a malicious adversary that can corrupt up to t parties.

Lemma 6.1. For every protocol that has the structure defined above and, in addition, satisfies the latter four
requirements, the protocol resulting from the transformation is (i) fully secure against a malicious adversary
that can corrupt any strict minority of the parties, and (ii) 1/p-secure against a malicious adversary that
can corrupt up to t parties.

Proof. We next consider two cases, the first case is when the adversary corrupts a strict minority of the
parties, and the second case is that at least half of the parties are malicious.

In the case of an honest majority, the shares of rij that the corrupted parties see do not reveal anything
to the adversary as long as the shares of honest parties are not revealed (these shares are only revealed in
the second phase of round i). Thus, if the adversary causes a premature termination during the first phase of
round i, then it has no more information than is obtained in the original protocol (by an adversary corrupting
the same subset of parties) until the beginning of round i. By the property of the original protocol, such
an adversary can cause as much harm as it can in the premature termination protocol (given the joint input
of the parties, i.e., the communication thus far). However, since an honest majority is guaranteed, this sub-
protocol is fully secure, and hence, also the full protocol is fully secure in this case. Notice that in the case
of an honest majority, if the first phase succeeds then the second phase succeeds.

In the case of no honest majority, it is quite straightforward to argue that an adversary attacking the
transformed protocol is not more powerful than an equivalent adversary for the original protocol. Intuitively,
this is true since once the adversary sees the messages of the corrupted parties, the masks add no information

58

and are simply random strings. To formalize this intuition, we consider the original protocol to be our ideal
functionality, and show that the transformed protocol emulates the original one. That is, we show that the
view of the adversary A in the new protocol can be simulated by its view in the original protocol when
corrupting the same subset of parties. Roughly speaking, this is done by the simulator, upon receiving the
messages of the corrupted parties, selecting masks for the messages of the corrupted parties and shares of
these masks. Then, the simulator sends to the adversary the masked messages and the shares of the masks
for the corrupted parties (all computed as prescribed in our transformation). In an interaction phase, if the
adversary A prematurely aborts in round i, either in the first phase or in the second phase but without
allowing the reconstruction of the masks to go through, then the simulator aborts in the middle of round i.
If the adversary allows the reconstruction of the masks in the second phase of round i and causes premature
termination after that, then the simulator aborts at the beginning of round i + 1.

Applying the transformation to the premature termination protocol ΠTERM. In the above description
of the transformation we required the protocol ΠTERM to be fully secure with an honest majority (recall
that ΠTERM is the protocol that the parties engage in when premature termination occurs). However, it is
also possible to consider a protocol ΠTERM that is not fully secure to begin with, but only 1/ poly-secure.
Nevertheless, if by applying the same transformation to this sub-protocol (which is executed with strictly
fewer parties than the main protocol), it can be turned into a new sub-protocol with the desired properties.
As a concrete example, consider Protocol MPCUnLtdr being executed with m = 5 parties. In this
case, an honest majority means that at least 3 parties are honest. Consider the case that p1 and p2 are
corrupted. In the case that p1 aborts in round i, the remaining four parties p2, . . . , p5 execute a 4-party
protocol. If they use the original 4-party protocol, then p2 can still bias the output of the protocol with some
noticeable probability. However, if this protocol is also transformed, then it is fully secure when at most one
party is corrupted, yielding the overall protocol fully-secure when at most two parties are corrupted. In the
general case, we apply Lemma 6.1 on Theorem 1 and Theorem 3, and obtain Theorem 5 and Theorem 6,
respectively.

7 Impossibility Results

7.1 Impossibility of 1/p-secure Computation with Non-Constant Number of Parties

For deterministic functions, our protocols are efficient when the number of parties m is constant and the size
of the domain or range is at most polynomial (in the security parameter n) or when the number of parties
is log logn and the size of the domain is constant. We next show that, in general, there is no efficient
protocol when the number of parties is m(n) = ω(1) and the size of the domain is polynomial, and
when m(n) = ω(logn) and the size of the domain of each party is 2. This is done using the following
impossibility result of Gordon and Katz [24].

Theorem 7 ([24]). For every ℓ(n) = ω(logn), there exists a deterministic 2-party functionality F with
domain and range {0, 1}ℓ(n) that cannot be 1/p-securely computed for p ≥ 2 + 1/poly(n).

We next state and prove our impossibility results.

Theorem 8. For every m(n) = ω(logn), there exists a deterministic m(n)-party functionality F ′ with
domain {0, 1} that cannot be 1/p-securely computed for p ≥ 2+1/ poly(n) without an honest majority.

59

Proof. Let ℓ(n) = m(n)/2 (for simplicity, assume m(n) is even). Let F = {fn}n∈N be the function-
ality guaranteed in Theorem 7 for ℓ(n). The function fn has two inputs, each input is ℓ(n)-bit long; that is,
the number of bits in the inputs of fn is 2ℓ(n) = m(n). Define an m(n)-party deterministic functionality
F ′ =

{
f ′n
}
n∈N, where in f ′n party pj gets the jth bit of the inputs of fn and the outputs of fn and f ′n are

equal. Assume that F ′ can be 1/p-securely computed by a protocol Π′ assuming that t(n) = m(n)/2
parties can be corrupted. This implies a 1/p-secure protocol Π forF with two parties, where the first party
simulates the first t(n) parties in Π′ and the second party simulates the last t(n) parties. The 1/p-security
of Π is implied by the fact that any adversaryA for the protocol Π can be transformed into an adversaryA′
for Π′ controlling m(n)/2 = t(n) parties; asA′ cannot violate the 1/p-security of Π′, the adversaryA
cannot violate the 1/p-security of Π.

Theorem 9. For every m(n) = ω(1), there exists a deterministic m(n)-party functionality F ′′ with
domain {0, 1}logn that cannot be 1/p-securely computed for p ≥ 2 + 1/poly(n) without an honest
majority.

Proof. Let ℓ(n) = 0.5m(n) logn and let F = {fn}n∈N be the functionality guaranteed in Theorem 7
for ℓ(m). We divide the 2ℓ(n) bits of the inputs of fn into m(n) blocks of length logn. Define an
m(n)-party deterministic functionality F ′′ =

{
f ′′n
}
n∈N, where in f ′′n party pj gets the jth block of the

inputs of fn and the outputs of fn and f ′′n are equal. As in the proof of Theorem 8, a 1/p-secure protocol
for F ′′ implies a 1/p-secure protocol for F contradicting Theorem 7.

The above impossibility results should be contrasted with the coin-tossing protocol of [5], which is
an efficient 1/p-secure protocol even when m is polynomial in the security parameter and the number of
bad parties is m(n)/2 +O(1). Notice that in both our impossibility results the size of the range is super-
polynomial (as we consider the model where all parties get the same output). It is open if there is an efficient
1/p-secure protocol when the number of parties is not constant and the size of both the domain and range
is polynomial.

7.2 Impossibility of Achieving “The Best of Both Worlds” for General Functionalities

Above we showed that 1/p-secure computation is impossible in general when the number of parties is
m(n) = ω(1) and the size of the domain is polynomial, and when m(n) = ω(logn) and the size of
the domain of each party is 2. Since a “Best of Both Worlds” type protocol with fall-back 1/p-security is in
particular 1/p-secure, the same impossibility results are implied for protocols of this type (i.e., guaranteeing
full security with an honest majority and 1/p-security otherwise). We show that such protocols are impossi-
ble in general, even when allowing the fall-back security to be the weaker notion of 1/p-security-with-abort.
Hence, we show that the results discussed in Section 6 are somewhat optimal.

We start by showing in Section 7.2.1 that for general functionalities (i.e., where both domains and both
ranges may be super-polynomial), it is impossible to construct even 3-party protocols that simultaneously
achieve full security for the case of an honest majority (i.e., at most one corrupted party) and 1/p-security-
with-abort with no honest majority. We then use this result in Section 7.2.2 to prove general impossibility
results.

In [26, 27], an impossibility result was given for the case that the fall-back security is security-with-abort
(as opposed to 1/p-security-with-abort). By combining ideas from [26, 27] and from Section 7.1 (and hence
from [24]), we are able to show impossibility results even with the weaker notion of 1/p-security-with-abort
as the fall-back security.

60

7.2.1 Impossibility of Achieving “The Best of Both Worlds” for a 3-Party Functionality

In this section we prove that it is not possible to construct best of both worlds type protocols for general
functionalities (with super-polynomial size domain and range). Specifically, we prove the following lemma:

Lemma 7.1. For every ℓ(n) = ω(logn), there exists a deterministic functionality F for three parties
p1, p2, p3, such that:

• The inputs domain of p1, p3 and the range are {0, 1}O(ℓ(n)).

• p2 has no input.

• F cannot be efficiently computed simultaneously guaranteeing full security against a single fail-stop
party and 1/p(·)-security-with-abort against two fail-stop parties, for any p > 2 + 1

poly
.

Proof. Our proof uses a variant of the functionality used in the impossibility result of [24] for obtaining
1/p-secure protocols for general 2-party functionalities. We define a deterministic 3-party function

Swap3
n : {0, 1}O(ℓ(n)) × ∅ × {0, 1}O(ℓ(n)) → {0, 1}2ℓ(n) .

We define the function relative to a fixed length function ℓ(n) = ω(logn) and an information theoretic
MAC scheme (Gen,Mac,Ver) for messages of length 2 ·ℓ(n) with key length O(ℓ(n)) and tag length
ℓ(n). We define Swap3 =

{
Swap3

n

}
n∈N as follows:

Swap3
n((x1, tag1, key3, tag

′
3, key

′
3), λ, (x3, tag3, key1, tag

′
1, key

′
1))

def
=

{
(x1, x3) if Verkey1

(x1, tag1) = 1 andVerkey3
(x3, tag3) = 1,

∗ otherwise.

In the above, λ denotes the empty string and ∗ is a symbol that is not in the input domain. That is, if p1 and
p3 each hold a message xi and an authentication of this message tagi (authenticated with the key held by
the other party), then the messages are revealed to all parties. The functionality ignores the two rightmost
elements in p1’s input and in p3’s input. These elements will be used by the proof to derive a security
failure.

We next prove that there is no 3-party protocol for computing Swap3 with a polynomial number
of rounds that simultaneously guarantees full security against adversaries that corrupt a single party and
1/p(·)-security-with-abort against adversaries that corrupt two parties, for any polynomial p > 2 + 1

poly
.

The idea of our proof is that whenever the adversary limits its deviation from the protocol to instructing
at most one party to abort, then the protocol cannot distinguish the case where the adversary corrupt two
parties from the case where it corrupts only a single party. Hence, the protocol can never instructs the parties
to output ⊥ in such executions. By the definition of 1/p-security-with-abort, this in effect means that we
are back to the scenario of 1/p-(full)-security. Furthermore, by considering adversaries that corrupt either
p1 and p2, or p2 and p3 (neither of which ever instruct p2 to abort), the adversary has the view of a strict
majority of the parties and we are essentially back to the case of a dishonest majority aiming at 1/p-security,
and we can specifically apply the arguments of [24] for the two-party scenario. The formal proof is given
below.

We fix the security parameter n and consider an ideal evaluation of Swap3
n in which both p1 and p3

receive inputs such that the output of the functionality on these inputs is of the form (x1, x3) (i.e., they
bear proper tags). In addition, each party also receives a pair (tag′, key′), where tag′ is an authentication

61

tag for the other party’s input xi, and key′ is the key with which this authentication was obtained. We will
later use the fact that this pair allows each party to check whether a given value x is the first element in the
other party’s input (this will be used in our real-world attack). Formally, we consider ideal world executions,
where:

• x1, x3 are each selected uniformly at random from {0, 1}2·ℓ(n).

• key1, key
′
1, key3, key

′
3 are selected by applying algorithm Gen to 1n.

• tag1 ←Mackey1
(x1), tag

′
1 ←Mackey′

1
(x1), tag3 ←Mackey3

(x3), tag
′
3 ←Mackey′

3
(x3).

• p1’s input is (x1, tag1, key3, tag
′
3, key

′
3).

• p3’s input is (x3, tag3, key1, tag
′
1, key

′
1).

We consider two adversaries, A and B. The adversary A corrupts p1 and p2 and instructs them to
execute the protocol faithfully until, at some point, it instructs p1 to abort. The adversary B corrupts p2 and
p3 and instructs them to execute the protocol faithfully until, at some point, it instructs p3 to abort. Neither
A nor B instructs p2 to abort. We say thatA wins ifA learns x3 while p3 fails to output x1. We say that
B wins if B learns x1 while p1 fails to output x3.

Winning in the ideal-world. In the ideal-world, no adversary can win with more than a negligible prob-
ability. To see this, consider for example an adversary AIDEAL that corrupts p1 and p2. In order to win,
AIDEAL can try two possible strategies:

1. AIDEAL may try to replace its input to the functionality so that the functionality returns a pair
(x′1, x3) with x′1 ̸= x1 (specifically, the functionality does not return ∗ as output). To do so,
AIDEAL must find (and use as input to the functionality) a pair (x′1, tag

′′
1), such that x′1 ̸= x1

and Verkey1
(x′1, tag

′′
1) = 1. However, by the properties of the one-time MAC, this is impossible

except with negligible probability.

2. Otherwise, AIDEAL may try to guess x3 based on (x1, tag1, key3, tag
′
3, key

′
3), and use some

junk input causing the output of the functionality to be ∗. One might think that this is possible
since p1 holds an authentication of x3. However, since x3 is a uniform 2ℓ(n)-long string and tag′3
is of length only ℓ(n), then even given the key key′3 there is information theoretically negligible
probability of guessing x3 correctly (for simplicity, assume the MAC scheme is regular, i.e., there
are 2ℓ(n) strings x that are mapped to the tag tag′3 by key′3).

Note that ifAIDEAL sends x1, tag1, key3 as the first three parameters of p1’s input, then it does not win,
since p3 learns x1.

Executions in the real-world where at most one party aborts. Our adversaries (which we describe in
more detail below) are fail-stop (i.e., the only way they deviate from the prescribed protocol is by instructing
a party to abort) and furthermore, they only instruct at most one party to abort. By the full security guarantee
against a single corrupted (specifically, fail-stop) party, this implies that the output of the two remaining
parties is ⊥ only with negligible probability (since in the ideal-world with an honest majority, the parties
never get output ⊥). For simplicity, we assume that this happens with zero probability. When describing
our adversaries, we will consider a mental game in which the adversary simulates the case that the honest

62

party has aborted in round i and computes the output of the two remaining (actually corrupted) parties in
such an event. The above argument explains that this computed output is never⊥, that is, it is either ∗ or of
the form (x, x′).

By the full security guarantee when all parties behave honestly, we also have that if no party ever aborts
the protocol, then the output of the execution is correct, except with negligible probability. For simplicity
we assume that if no party ever aborts, then we have perfect correctness. Hence, below we only consider
executions in which the output is never ⊥ (even if one party aborts), and with full correctness (when none
of the parties abort).

Winning in the real-world. We show that in the real-world there is an adversary that wins with probability
almost 1/2. Roughly speaking, this adversary simulates in each round the event that, say, p3 aborts and tries
to learn the x3; if the adversary learns the output it aborts, and otherwise proceeds “honestly”. Intuitively,
the reason that such a strategy succeeds with high probability is that in the real-world the parties cannot
learn the output simultaneously; hence, one of our adversaries learns the output first with high probability.
Since the adversary is able to detect the point in which it learns the output (using the extra key and tag), it
can abort the computation, not allowing the honest party to learn the output.

We next formalize the above intuition by formally describing the two adversaries A and B mentioned
above and analyzing their success probabilities. Assume by way of contradiction that Π is an r-round
3-party protocol that simultaneously guarantees full security against one fail-stop party and 1/p-security-
with-abort against two fail-stop parties (for some p(n) > 1

2
+ 1

poly
).

The adversaryA: In each round i of the protocol, before broadcasting the messages of the corrupted
p1 and p2, but after seeing the i’th message broadcast by p3 (i.e., using the rushing property), the
adversary A computes the value ai as the output of honest parties p1, p2 where p3 aborts after
broadcasting the i’th message. If ai is of the form (x, x′) and Verkey′

3
(x′, tag′3) = 1, then A

instructs p1 to abort and p2 to proceed honestly with the computation, and outputs x′. Otherwise,
both parties send their i’th message as prescribed by the protocol.

The adversary B: The adversary B is defined analogously to A. That is, in each round i of the pro-
tocol, before broadcasting the messages of the corrupted p2 and p3, but after seeing the i’th mes-
sage broadcast by p1, the adversary B computes the value bi to be the output of honest parties
p2, p3 in the case p1 aborts after broadcasting the i’th message. If bi is of the form (x, x′) and
Verkey′

1
(x, tag′1) = 1, then B instructs p3 to abort and p2 to proceed honestly with the computa-

tion, and outputs x. Otherwise, both parties send their i’th message as prescribed by the protocol.

By the full correctness of the protocol and by the way the inputs are chosen, it must hold that if no party
aborts the execution, then the output of all parties is of the form (x, x′) and that both Verkey′

3
(x′, tag′3) =

1 and Verkey′
1
(x, tag′1) = 1. Hence, for every execution of the protocol, both A and B abort in some

round (as the condition for abort holds in the last round). We can denote by iA the round in which A
aborts playing against an honest p3, and by iB the round in which B aborts playing against an honest p1.
Furthermore, either iA ≤ iB with probability at least 1/2 or iA > iB with probability at least 1/2.
Assume, without loss of generality, that the former holds. We argue that this means that A wins with
probability negligibly close to 1/2. To show this is true we need to show that with probability close to 1/2
two things happen (1)A outputs x3, and (2) p3 does not output x1. We consider all executions for which
iA ≤ iB (occurring with probability close to 1/2), and we show that A wins in these executions, except
with negligible probability. SinceA aborts such executions in round iA − 1, that means thatA outputs x′

such that Verkey′
3
(x′, tag′3) = 1. By the (information theoretic) security of the MAC scheme and since

63

the choice of tag′3, key
′
3 is independent of the execution of the protocol, except with negligible probability

x′ = x3. On the other hand, since iA ≤ iB, in this execution if p1 aborts in round iA − 1 ≤ iB − 1,
then the output of p2, p3 is either ∗ or of the form (x, x′) with Verkey′

1
(x, tag′1) ̸= 1, namely, x ̸= x1.

We have shown a distribution over inputs on which one can distinguish the real-world from the ideal-
world with probability 1

2
− µ(n), where µ is some negligible function. Hence, there must exist one set

of inputs on which the same holds with at least this probability, contradicting the 1/p-security against two
fail-stop parties.

7.2.2 Impossibility of Achieving “Best of Both Worlds” Computations with Non-Constant Number
of Parties

Our best-of-both-worlds type protocols are more efficient when considering 1/p-security-with-abort fall-
back than when considering 1/p-security fall-back. However, both cases inherit the limitation on the num-
ber of parties and the size of the domain and range from our 1/p-secure protocols as discussed in Sec-
tion 7. We next show that, in general, there is no efficient best-of-both-worlds type protocol (even with
1/p-security-with-abort fall-back security) when the number of parties is m(n) = ω(1) and the size of
the domain is polynomial, and when m(n) = ω(logn) and the size of the domain of each party is 2. This
is done using the 3-party impossibility proved in Lemma 7.1 (very similarly to the use of the impossibility
result of Gordon and Katz [24] in Section 7.1).

We next state and prove our impossibility results.

Theorem 10. For every m(n) = ω(logn), there exists a deterministic m(n)-party functionalityF ′ with
domain {0, 1} that cannot be computed simultaneously guaranteeing full security with an honest majority
and 1/p-security-with-abort for p ≥ 2 + 1/poly(n) without an honest majority.

Furthermore, F ′ cannot even be computed when reducing the 1/p-security-with-abort requirement to
hold only against an adversary controlling

⌊
m(n)

2

⌋
+ 1 parties.

Proof. Let F = {fn}n∈N be the functionality guaranteed in Lemma 7.1 for c · ℓ(n) for some constant
c. Recall that the functionality F has two inputs of length ℓ(n), one for p1 and one for p3, and that p2

has no input. Assume for simplicity that m(n) = 2cm′ + 1. Define a m(n)-party (i.e., for parties
P1, . . . , P2cm′+1) deterministic functionality F ′ =

{
f ′n
}
n∈N, where in f ′n party Pj for 1 ≤ j ≤ cm′,

gets the j-th bit of the input of p1 in fn, party Pj , for cm′ + 1 ≤ j ≤ 2cm′, gets the (j − cm′)-th bit
of the input of p3 in fn, and P2cm′+1 gets no input; the outputs of fn and f ′n are equal. Assume towards
a contradiction thatF ′ can be computed simultaneously guarantee full security with an honest majority and
1/p-security-with-abort without an honest majority by a protocol Π′. This implies a protocol Π forF with
three parties that simultaneously guaranteeing full security with an honest majority and 1/p-security-with-
abort without an honest majority.

In protocol Π the first party (i.e., p1) simulates the first cm′ parties in Π′, the third party (i.e., p3)
simulates the following cm′ parties, and the second party (i.e., p2) simulates the last party P2cm′+1 in Π′.

• The full security of Π with an honest majority is implied by the fact that any adversary A for the
protocol Π corrupting a single party pk (where k ∈ {1, 2, 3}) can be transformed into an adversary
A′ for Π′ controlling all parties that are simulated by pk, which is a strict minority; as A′ cannot
violate the security of Π′, the adversaryA cannot violate the security of Π.

• The 1/p-security-with-abort of Π against a dishonest majority is implied by the fact that any adver-
saryA for the protocol Π corrupting two parties pk, pj (where k, j ∈ {1, 2, 3}) can be transformed

64

into an adversary A′ for Π′ controlling all parties that are simulated by pk or by pj ; as A′ cannot
violate the 1/p-security-with-abort of Π′, the adversaryA cannot violate the 1/p-security of Π.

However, since such a 3-party protocol Π does not exist for F , neither does Π′.
The further statement of the theorem is derived using the same arguments, looking further into the proof

of Lemma 7.1. This proof shows that if a protocol Π for computing F is fully secure in the case of an
honest majority, then its 1/p-security-with-abort can either be attacked by an adversary corrupting p1, p2

or by an adversary corrupting p2, p3. Hence, any protocol Π′ for computing F ′ that is fully secure in the
case of an honest majority can either be attacked by an adversary corrupting P1, . . . , Pcm′ and P2cm′+1

or by an adversary corrupting Pcm′+1, . . . , P2cm′ and P2cm′+1.

Theorem 11. For every m(n) = ω(1), there exists a deterministic m(n)-party functionality F ′′ with
domain {0, 1}logn that cannot be computed simultaneously guaranteeing full security with an honest ma-
jority and 1/p-security-with-abort for p ≥ 2 + 1/poly(n) without an honest majority.

Furthermore, F ′ cannot even be computed when reducing the 1/p-security-with-abort requirement to
hold only against an adversary controlling

⌊
m(n)

2

⌋
+ 1 parties.

Proof. Assume for simplicity that m(n) = 2cm′ + 1. Let ℓ(n) = cm′ logn and let F = {fn}n∈N
be the functionality guaranteed in Lemma 7.1 for ℓ(n). We divide the ℓ(n) bits of each input of fn into
cm′ blocks of length logn. Define an (2cm′ + 1)-party deterministic functionality F ′′ =

{
f ′′n
}
n∈N,

where in f ′′n party pj , for 1 ≤ j ≤ cm′, gets the j-th block of logn bits of the input of p1 in fn, party
pj , for cm′+1 ≤ j ≤ 2cm′+1, gets the (j − cm′)-th block of the input of p3 in fn, and the outputs
of fn and f ′n are equal. As in the proof of Theorem 10, a protocol Π′′ that computes F ′′ simultaneously
guaranteeing full security with an honest majority and 1/p-security-with-abort without an honest majority
implies a protocol Π for F with three parties that simultaneously guaranteeing full security with an honest
majority and 1/p-security-with-abort without an honest majority contradicting Lemma 7.1.

References

[1] G. Asharov, Y. Lindell, and T. Rabin. A full characterization of functions that imply fair coin tossing
and ramifications to fairness. In TCC, pages 243–262, 2013.

[2] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adver-
saries. J. of Cryptology, 23(2):281–343, 2010.

[3] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In Proc. of the 30th IEEE
Symp. on Foundations of Computer Science, pages 468–473, 1989.

[4] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In Proc. of the 22nd
ACM Symp. on the Theory of Computing, pages 503–513, 1990.

[5] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority. J. of
Cryptology, 2013. To appear. Conference version in: T. Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 538-557. Springer-Verlag,
2010.

65

[6] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts. In Proceedings
of the 12th Colloquium on Automata, Languages and Programming, pages 43–52. Springer-Verlag,
1985.

[7] M. Blum. How to exchange (secret) keys. ACM Trans. Comput. Syst., 1(2):175–193, 1983.

[8] D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in Cryptology – CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages 236–254. Springer-Verlag, 2000.

[9] R. Canetti. Security and composition of multiparty cryptographic protocols. J. of Cryptology,
13(1):143–202, 2000.

[10] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proc. of the 18th
ACM Symp. on the Theory of Computing, pages 364–369, 1986.

[11] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In G. Brassard,
editor, Advances in Cryptology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 573–588. Springer-Verlag, 1990.

[12] I. Damgård. Practical and provably secure release of a secret and exchange of signatures. J. of Cryp-
tology, 8(4):201–222, 1995.

[13] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. CACM,
28(6):637–647, 1985.

[14] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-tolerant protocols and the
public-key model. In C. Pomerance, editor, Advances in Cryptology – CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 135–155. Springer-Verlag, 1988.

[15] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability of
cryptographic protocols. JCryptology, 24(4):615–658, 2011.

[16] O. Goldreich. Foundations of Cryptography, Voume I – Basic Tools. Cambridge University Press,
2001.

[17] O. Goldreich. Foundations of Cryptography, Voume II – Basic Applications. Cambridge University
Press, 2004.

[18] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. of the 19th ACM
Symp. on the Theory of Computing, pages 218–229, 1987.

[19] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority.
In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology – CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages 77–93. Springer-Verlag, 1991.

[20] S. Goldwasser and Y. Lindell. Secure multi-party computation without agreement. J. of Cryptology,
18(3):247–287, 2005.

[21] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party computation.
JACM, 58(6):24, 2011.

66

[22] S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai. On complete primitives for fairness. In
D. Micciancio, editor, Proc. of the Seventh Theory of Cryptography Conference – TCC 2010, volume
5978 of Lecture Notes in Computer Science, pages 91–108. Springer-Verlag, 2010.

[23] S. D. Gordon and J. Katz. Complete fairness in multi-party computation without an honest majority.
In O. Reingold, editor, Proc. of the Sixth Theory of Cryptography Conference – TCC 2009, Lecture
Notes in Computer Science, pages 19–35, 2009.

[24] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. J. of Cryptology, 25(1):14–
40, 2012.

[25] Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank. On achieving the “best of both world” in
secure multiparty computation. SIAM J. on Computing, 40(1), 2011. Journal version of [26, 27].

[26] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guaranteed output
delivery in secure multiparty computation. In Advances in Cryptology – CRYPTO 2006, volume 4117
of Lecture Notes in Computer Science, pages 483–500. Springer-Verlag, 2006.

[27] J. Katz. On achieving the “best of both worlds” in secure multiparty computation. In Proc. of the 39th
ACM Symp. on the Theory of Computing, pages 11–20, 2007.

[28] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping a
symmetrically-biased coin. In Proc. of the 24th IEEE Symp. on Foundations of Computer Science,
pages 11–21, 1983.

[29] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In O. Reingold, editor, Proc. of the
Sixth Theory of Cryptography Conference – TCC 2009, Lecture Notes in Computer Science, pages
1–18, 2009.

[30] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In Proc. of
the 36th ACM Symp. on the Theory of Computing, pages 232–241, 2004.

[31] B. Pinkas. Fair secure two-party computation. In E. Biham, editor, Advances in Cryptology – EU-
ROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 87–105. Springer-Verlag,
2003.

[32] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[33] A. C. Yao. How to generate and exchange secrets. In Proc. of the 27th IEEE Symp. on Foundations of
Computer Science, pages 162–167, 1986.

A Proof of Lemma 2.6

Proof. Fix D1, D2 satisfying Inequality (1). We prove the lemma by induction on r. When r = 1 the
lemma is trivially true; Assume win(r + 1) ≤ 1/αr + β; we upper-bound win(r + 1). As A is
unbounded, we can assume without loss of generality that A is deterministic. Let S denote a set in the
support of D2 such that A aborts in the first iteration if and only if a1 ∈ S. We define Sh as all the
elements z ∈ S s.t. Pra←D1[a = z] ≥ αPra←D2[a = z] holds for them and Sℓ = S \ Sh. Observe
that Pr[a1 ∈ Sℓ] ≤ β. If A does not abort in the first iteration, and the game does not end, then the

67

conditional distribution of i⋆ is uniform in {2, . . . , r} and the game Γ(r + 1) from this point forward is
exactly equivalent to the game Γ(r+1). In particular, conditioned on the game Γ(r+1) not ending after
the first iteration, the probability thatA wins is at most win(r + 1). We thus have

Pr[win(r + 1)]

= Pr[Awins∧a1 ∈ Sℓ ∧ i⋆ = 1] + Pr[Awins∧a1 ∈ Sh ∧ i⋆ = 1] + Pr[Awins∧i⋆ > 1]

≤ Pr[a1 ∈ Sℓ ∧ i⋆ = 1] + Pr[a1 ∈ Sh ∧ i⋆ = 1] + Pr[Awins∧i⋆ > 1]

=
β

r + 1
+

1

r + 1
Pr

a1←D2

[a1 ∈ Sh] +
r

r + 1

(
1− Pr

a1←D1

[a1 ∈ S]

)
win(r)

≤
β

r + 1
+

1

r + 1
Pr

a1←D2

[a1 ∈ Sh] +
r

r + 1

(
1− Pr

a1←D1

[a1 ∈ Sh]

)(
1

αr
+ β

)
≤

β

r + 1
+

1

r + 1
Pr

a1←D2

[a1 ∈ Sh] +
r

r + 1

(
1− Pr

a1←D1

[a1 ∈ Sh]

)
1

αr
+

r

r + 1
β

≤ β +
1

r + 1
Pr

a1←D2

[a1 ∈ Sh] +
r

r + 1

(
1− α Pr

a1←D2

[a1 ∈ Sh]

)
1

αr

= β +
1

α(r + 1)
,

68

