Matrix Columns Allocation Problems

Amos Beimel !

Department of Computer Science, Ben-Gurion University, Be’er Sheva, Israel

Boaz Ben-Moshe

College of Judea € Samaria, Ariel, 14837, Israel

Yehuda Ben-Shimol

Department of Communication Systems Engineering, Ben-Gurion University,
Be’er Sheva, Israel

Paz Carmi

School of Computer Science, Carleton University, Ottawa, Canada

Eldad Chai

Department of Communication Systems Engineering, Ben-Gurion University,
Be’er Sheva, Israel

Itzik Kitroser

Department of Communication Systems Engineering, Ben-Gurion University,
Be’er Sheva, Israel

Eran Omri 2

Department of Computer Science, Ben-Gurion University, Be’er Sheva, Israel

Abstract

Orthogonal Frequency Division Multiple Access (OFDMA) transmission technique
is gaining popularity as a preferred technique in the emerging broadband wireless
access standards. Motivated by the OFDMA transmission technique we define the
following problem: Let M be a matrix (over R) of size a x b. Given a vector of
non-negative integers C = (c1,¢2,...,¢p) such that)" ¢; = a, we would like to
allocate a cells in M such that (i) in each row of M there is a single allocation,
and (ii) for each element ¢; € C there is a unique column in M which contains
exactly ¢; allocations. Our goal is to find an allocation with minimal value, that
is, the sum of all the a cells of M which were allocated is minimal. The nature of

Preprint submitted to Elsevier September 14, 2008

the suggested new problem is investigated in this paper. Efficient algorithms are
suggested for some interesting cases. For other cases of the problem, NP-hardness
proofs are given followed by inapproximability results.

Key words: Allocation problems, NP-completeness, Inapproximability

1 Introduction

The growing use of communication networks and the emerging techniques
constantly developed for them require solving many new algorithmic prob-
lems. Such problems are often raised by mapping and allocating optimization
tasks [4, 7, 8, 10]. In particular, the Orthogonal Frequency Division Multi-
ple Access (OFDMA) transmission technique introduces such new allocation
problems. In this work we introduce the Matrix Column Allocation Problem
(MCAP) which models one such problem and present theoretical results con-
cerning it: we construct an efficient algorithm for one version of the problem
and prove NP-hardness results for the other variants of this problem.

1.1 Background and Motivation

The OFDMA modulation technique is gaining popularity as a preferred tech-
nique in the emerging broadband wireless access standards. The IEEE802.16
standard [1] with its mobility extension IEEE802.16e-2005 [2] (also known as
WiMazx) is based on OFDMA and is considered as a candidate for the next
generation broad wireless access systems.

In a general digital communication systems, the information is in the form of
bits, or collections of bits called symbols, that are modulated onto the carrier.
The time duration of a symbol depends on the used bandwidth. As higher
bandwidths (data rates) are used, the duration of one bit or symbol of infor-
mation becomes smaller. In an OFDMA modulation, the channel bandwidth
is broken into a large number of closely and equally spaced orthogonal low
rate sub-carriers, hence an OFDMA symbol duration depends directly on the

Email addresses: beimel@cs.bgu.ac.il (Amos Beimel), benmo@yosh.ac.il
(Boaz Ben-Moshe), benshimo@bgu.ac.il (Yehuda Ben-Shimol),
carmip@cs.bgu.ac.il (Paz Carmi), kitroser@bgu.ac.il (Itzik Kitroser),
omrier@cs.bgu.ac.il (Eran Omri).

L Part of this work was done while the author was on sabbatical at the University of
California, Davis, partially supported by the David and Lucile Packard Foundation.
2 Research is partially supported by the Frankel Center for Computer Science.

number of used sub-carriers. In addition, the sub-carriers are divided into sub-
sets of sub-carriers where each subset represents a sub-channel which is the
minimum transmission unit in an OFDMA symbol. The allocation unit in such
systems is a combination of OFDMA time symbol and a sub-channel and is
called a slot.

We use the model for uplink resource allocations given in [I, 2], which is
compliant with the OFDMA slot definition. In this model slots are indexed
starting at the lowest numbered sub-channel and the first OFDMA symbol up
to the last. When the last OFDMA symbol is reached, the indexing continues
from the next sub-channel and the first OFDMA symbol. At each allocation
period (time frame), the clients are allocated sets of slots which are usually
successive, but may also be scattered. The specific number of required slots
per client depends on its transmission capability and the transmission rate on
those slots is set to meet the client’s needs and capabilities (i.e., packet size
and available rate). In addition, scattered allocations may imply additional
cost (in term of system resources) to describe such allocations. The allocation
slots and numbering scheme in OFDMA systems are illustrated in Figure 1.

Time Symbol

n
>

Slot 12 | Slot 13 | Slot 14 | Slot 15 | Slot 16 | Slot 17

Sub-Channel
2]
o
<}
=3
2]
=3
~
2]
9
<]
o
2]
g
e
©
2]
9
=X
.
S

~Slot 11

Slot 0 Slot 1 Slot 2 Slot 3 Slot'Z™-§--Slot 5

Figure 1. The slot numbering process.

In OFDMA based wireless systems, mapping is the process of allocating re-
sources (slots) to clients according to their demands and is performed after the
scheduling process.® The slots are represented by an indexed list from which
clients are allocated sets of resources. Most mapping models do not allow
mapping optimizations, thus the mapping process generates a large amount of
mapping overhead (since the mapping description must be sent to the clients);
this overhead reduces the system performance. In this paper we consider a
mapping model that can be used to reduce the mapping overhead. In this
model each resource is assigned a weight for every client. Each weight repre-
sents both description cost and mapping overhead that may be generated if
the resource is allocated to a certain client. For example, in [3] the authors
presented a method of persistent allocation of slots to clients. In their sys-
tem, the clients are allocated specific slots in a certain time frame without a
need for description in subsequent time frames if no change is required. Each
change in allocated slots or reallocation due to other clients’ needs would re-
sult in system overhead for description. The reallocation of slots may create
high overhead since it may require reallocation to other clients as well. Hence,
weights may vary for a client even for consecutive slots.

3 Further discussion on the mapping process can be found in [3].

We define an allocation problem on a matrix to represent the suggested map-
ping model and the resource allocation process in IEEE802.16. First, we define
a matrix M interpreting the OFDMA resource list where there is a row for
each slot available for allocation and there is a column for each active client.
The cell M;; is the overhead if slot ¢ is allocated to client j. We also define
a vector C describing the slot requirements of the clients, where ¢; — the jth
coordinate of C' — denotes the number of slots required by client j for transmis-
sion. Given the matrix M and the vector C , we want an allocation of slots to
the clients that minimizes the total overhead. There are two requirements: (1)
we should allocate each slot to exactly one client, and (2) we should allocate
c; slots for the jth client. We consider two versions of the problem; in one
version the slots allocated to a client should be consecutive and in the other
version the slots need not be consecutive.

1.2 Problem Formulation

Motivated by the above discussion, we next formally define various versions of
the matrix columns allocation problem. In addition to distinguishing between
allocations where allocated cells are consecutive or not, we also define versions
where the solution can apply a permutation to the vector C. The reason for
allowing the permutation is two-fold. First, we believe that this is a natural
generalization of the original problem and it is interesting to see if this gener-
alization makes the problem harder or easier. Second, we use the permutation
version to present the ideas of the more complicated reduction needed for the
version without the permutation.

Definition 1.1 (The Matrix Columns Allocation Problem — MCAP)

Let M be a matriz (over R) of size a x b and C = (c1,ca, ...,) be a vector
of non-negative integers, called the demand vector, such that Y- c; = a. A so-
lution to the MCAP is an allocation S = {{a;, 3;) : 1 <i < a} of a cells in
M (ie., a; € {1,...,a} and §; € {1,...,b}) such that:

Row constraint. There is exactly one cell in S from each row, and

Column constraint. There is a permutation P : {1,...,b} — {1,...,b} of
the columns of M such that in S there are exactly cpyy cells from the ith
column of M for every column i € {1,...,b}.

The value of an allocation S is the sum of the values of all the cells of M
which were allocated. Our goal is to find an allocation whose value s minimal.

The generic MCAP is considered with the following possible requirements:
Consecutive allocation (blocks). Here we require that, for each column,

the cp(cells are consecutive (block constraint).
Fixzed permutation. Here we require that P is the identity permutation,

(i) (i) (i) (iv)

No Block No Block Block Block

Any Permutation | |Fixed Permutation Any Permutation Fixed Permutation
c1 ¢y C3 c1 cy c3 c1 cy c3 c1 cy c3
ri10 5 1 rn| 0O 5 1 rnl 0 5 1 | 0 B 1
rol4 0 1 rol 4 0 1 rol 4 0 1 ro 4 0 1
rs110 0 1 rs 10 0 1 rs1 10 0 1 rs1 10 0 1
ry 15025 0 ry| 50 25 0 ry| 50 25 0 ry| 50 25 0
rs|1 0 3 rs| 1 0 3 rs| 1 0 3 rs| 1 0 3
re| 1 50 O r¢| 1 50 0 r¢| 1 50 0 r¢| 1L 50 0
718 0 50 r7| 8 0 50 r7| 8 0 50 r7| 8 0 50
rg|0 10 1 rg| 0 10 1 rg| 0 10 1 rg| O 10 1
re (10 O 50 rg| 10 0 50 rg| 10 O 50 ro| 10 0 50
roll 4 0 rol 1 4 0 rol 1 4 0 rol 1 4 0

Solution value: 0 Solution value: 4 Solution value: 19 Solution value: 28

Permutation: < 2,5,3 > Permutation: < 3,2,5 >

Figure 2. Example instances of MCAP. The above tables represent the appropriate solutions of all four
MCAP cases for the same 3 x 10 matrix with the same demand vector C' =< 5,3,2 >.

that is, S should contain exactly c; cells from the jth column. In this case,
we say that there is a fixed permutation.

If we remove the first requirement, then we simply allow any cpy cells from
the ith column. Similarly, If we remove the second requirement, we simply
allow any permutation P. Considering the problem with or without these two
requirements, four cases of the problem are defined.

Example 1.1 In Figure 2 we describe an MCAP instance (a matrix and a
demand vector), and show optimal allocations for it for the four variants of
MCAP. The reader can easily verify that cells allocated (appearing in Bold-
Face) in each table indeed form a legal solution for the appropriate case.

We next briefly explain why each solution is also optimal. For case (i) (no
block, any permutation), this is clear as we cannot expect better than a zero
valued solution. For case (ii) (no block, fized permutation), it can be easily
verified that our solution is optimal (although not a unique optimal solution).
For cases (iii) (block, any permutation) and (iv) (block, fized permutation),
note that an allocation of the block of size 5 in rows r5 — rg (respectively,
ro — T¢) is not possible, as there will be no way to allocate cells in row g

(respectively, row 7). Next observe that any possible allocation of the block
of size 5, anywhere other than the choices of (iii) and (iv), will result in a
solution of value at least 30. Using this observation, verifying the optimality
of our solutions is easy.

It is quite straightforward that the value of an optimal allocation for the no
block, any permutation version for a given instance of MCAP is at most the
value of an optimal allocation for any of the other three MCAP versions.
Conversely, the value of an optimal allocation for the block, fized permutation
version for a given instance of MCAP is at least the value of an optimal
allocation for any of the other three MCAP versions. However, for a given
instance the value of an optimal allocation for the no block, fixed permutation
instance can be less, equal, or more than the value of an optimal allocation
for the block, any permutation version.

Our main result in this paper is a proof that three versions of MCAP — block,
fized permutation MCAP, no block, any permutation MCAP, and block, any
permutation MCAP — are NP-hard, and, in fact, they cannot be efficiently
approximated within any factor unless P=NP. To prove the NP-completeness
we construct two reductions from the vertex cover problem, which was proved
to be NP-complete by Karp [5]. The generalization of the hardness results to
inapproximability results is quite simple and does not use the PCP theorem.
The proofs are similar to the proof that the traveling sales person (TSP)
problem (without the triangular inequality) cannot be approximated [9].

To complement our results, we present efficient exact algorithms for one ver-
sion and a few restrictions of the MCAP. First, we construct a polynomial-
time algorithm for the no block, fized permutation MCAP using the algorithm
for minimum perfect matching [6]. We then show, using dynamic program-
ming, that the block, fized permutation MCAP and the block, any permuta-
tion MCAP have polynomial-time algorithms if the number of columns in the
matrix is at most logarithmic in the number of rows.

The positive results presented in this paper (i.e., the polynomial-time algo-
rithms) can be used for improving performance in OFDMA systems imple-
menting the suggested mapping model where clients can be allocated any set
of resources. Furthermore, the negative results presented in this paper suggest
that optimizing the mapping process in OFDMA systems, in particular mini-
mizing the mapping overhead, is infeasible. Therefore, if such optimization is
desired, then a heuristic approach should be considered.

Related Work. The problems that are considered in this work are a gener-
alization of simple assignment problems [6], where we want an allocation with
exactly one cell from each row and exactly one cell from each column (that
is, find a minimum weighted perfect matching in a bipartite graph). Indeed,
our polynomial-time solution for the no block, fized permutation MCAP is by

a reduction to this problem. Generalizations of the simple assignment prob-
lem (different than the ones considered in this paper) appear in the literature

(e.g., [11]).

Organization. Section 2 shows that the no block, fixed permutation MCAP
has a polynomial-time algorithm, followed with a set of special cases for which
the other versions of MCAP also have polynomial-time algorithm. Section 3
contains the main part of this paper; NP hardness proofs for versions (#2—#4)
of the problem are given, followed with inapproximability results.

2 Positive results

We next prove that no block, fixred permutation MCAP has a polynomial-
time algorithm. We then show that the block, fixed permutation MCAP and
the block, any permutation MCAP have a polynomial-time algorithm if the
number of columns in the matrix is logarithmic in the number of rows.

Lemma 2.1 The no block, fixed permutation MCAP has a polynomial-time
algorithm.

PROOF. The proof is by reduction to the minimum weight perfect matching
problem. Given an instance (M,C) of MCAP (where M has a rows and b
columns), we first construct a new matrix M’ of size a X a where every column
1 in M 1is duplicated ¢; times in M’, and a new demand vector Cr=1 (i.e.,
¢, =1forall 1 <i<a). Notice that the number of columns in M’ is 0_, c;,
which is the number of rows in M. Thus, constructing (M’, C") can be done in
polynomial time. Now, a solution S’ for the instance (M’, cr) straightforwardly
implies a solution S for the original instance (M, c) with the same value, where
for every column ¢ in M, we select all cells which are taken from the ¢; copies
of that column in M’. Similarly, a solution S for (M,) implies a solution S’
for (M, C") with the same value.

Observe that such a solution for (M’,C") takes exactly one cell in each row
and one cell in each column, that is, it is a matching between the rows and the
columns. Thus, to find a minimum solution to (M, 6), we need to solve the
minimum weighted perfect matching problem on the bipartite graph described
by the matrix M’. The latter task can be solved in polynomial-time [6]. O

We next show that when the number of columns is small we can solve the two
versions of the block constraint MCAP in polynomial time. In contrast, we
will prove that without this restriction the problem is NP-hard.

Lemma 2.2 The block, fixed permutation MCAP and the block, any per-
mutation MCAP can be solved in time a-2°®) | where a is the number of rows
in the input matriz, and b is the number of columns in the input matrix.

PROOF. We first present an algorithm for block, fixed permutation MCAP.
Later, we show how this algorithm may be modified to solve the block, any
permutation MCAP. The idea of the algorithm is to apply a divide and con-
quer technique. Assume we have an instance (M, C) and a “guess” Cl,CQ,
where C_"l contains half of the coordinates of C and C_’; contains the other half.
This guess states that all the coordinates of C should be allocated higher in
M than all coordinates of Cy. We then obtain two independent instances of
the problem. We solve each instance recursively, and combine the minimum
solutions of these instances into a minimum solution for the original instance.
As we do not know how to make such guesses of C71, 62, we check all possible
partitions of C' and take the minimum solution over all partitions.

Formally, given an instance (M, é), the algorithm goes over all possible parti-
tion sets I C {1,...,b} of size b/2. For each such I, the algorithm constructs

two independent instances (M!,CI) and (MZ,Cl) as follows: First, denote
ay := Y er ¢i- The matrix M{ contains the a; top rows of the columns indexed
by I in M, and the matrix M ! contains the a —a; bottom rows of the columns

not indexed by I in M. Finally, define cl = <Cz>zef and 02 = (i) ;¢ Notice

that every pair of solutions S and SI, for (M!,CT) and (M, C1) respectively,
implies a solution ST to (M, (') whose value is the sum of the values of the
solutions ST and SI. The algorithm, therefore, sets the solution S for (M, C_")
to be min(S?). Furthermore, any solution S’ to (M, (), defines a partition

set I: Take I to be the set of indices such that the consecutive blocks in the
columns in I are the b/2 top blocks S’ allocates in M. Thus S is optimal.

There are at most (b%) < 2" ways of choosing a set I C {1,...,b} of size b/2.
For each such I, the algorithm computes its minimal value recursively, and
the total value is the sum of this two values. Denote the running time of this
recursive algorithm on an instance with a rows and b columns by 7'(a, b). Thus,
T(a,b) <2°-2-T(a,b/2) (since the algorithm constructs two instances, each
with b/2 columns and less than a rows), and T'(a,1) = O(a). Thus, solving
this recursion yields T'(a,b) < O(a[[28" 2'%/%) = O(a - 2%).

To solve the block, any permutation MCAP, we can apply the above algorithm
for every permutation, and taking the solution whose value is minimum over
all permutations. We get an algorithm whose complexity is O(a - 22° - b!). A
more efficient algorithm with complexity O(a - 2%) is obtained by modifying
the above recursive algorithm. In the recursive step, in addition to the choice
of the partition of the columns to the top and bottom matrices, we also need
to partition the demand vector. Formally, to define a partition of an instance

(M, C) into two instances, we choose two sets I,.J C {1,...,b} of size b/2
each. We define the two instances (M{ : Cl) and (M, C’2), where the matrices

M} and M/ are as above and C’1 = (ci);e; and C’2 i= (Ci)igs- A similar
analysis shows that the resulting algorithm is correct and that its running
time is a - 200, O

3 Hardness and Inapproximability Results

To prove the hardness (and inapproximability) of the three remaining versions
of MCAP, we present two related reductions from the Vertex-Cover problem,
one of the original problems proved to be NP-complete by Karp [5]. The first
reduction proves that the no block, any permutation MCAP is NP-Hard.
The second reduction uses similar ideas, however with a more complicated
construction, and proves that the block, fized permutation MCAP and the
block, any permutation MCAP are NP-hard.

3.1 Hardness of the no block, any permutation MCAP

Lemma 3.1 The no block, any permutation MCAP is NP-Hard.

PROOQOF. Given an instance G, k of the vertex cover problem, we construct
an instance (M, C') of the no block, any permutation MCAP such that G has
a vertex cover of size k iff (M, C') has an allocation whose value is zero.

We start by describing a construction that does not have this property and
then we “fix” it. Given a graph G = (V, E) with n vertices, we construct a
matrix M over {0, 1}, in which each column represents a vertex in V' and each
row stands for an edge in E. For the row representing e = (v,u), we assign
the value 0 to the cells of the columns representing v and u, and 1 to all other
cells. We observe that, by the row constraints,

Observation 3.2 Every allocation whose value is 0 must choose in the row
representing e = (v, u) either the cell in the column representing v or the cell
in the column representing u.

Now, given an allocation whose value is 0, consider the set of vertices cor-
responding to columns having at least one cell in an allocation. By Obser-
vation 3.2, this set is a vertex cover of the graph G. Thus, the graph G has
a vertex cover of size k iff there exists a demand vector C' with k non-zero
entries such that (M, C') has an allocation whose value is 0.

V1 Vg Vg Vg
€1 0 O 1 1
€9 1 0 1 0
€3 1 O 0 1
€4 1 1 0 0
rs/0 0 0 0
€3
v v /0 0 0 O
€1 €4 7 0O 0 O 0
o o rs|0 0 0 0

Figure 3. A graph with a vertex cover of size 2 and the corresponding instance for the MCAP, where
the demand vector is (4,4, 0,0). The vertex cover is composed of the two black vertices and the allocation

contains all bold-face cells.

Trying to apply this approach we face two hurdles in constructing the vector
C. The first is that we must allow two adjacent vertices to be chosen in the
vertex cover, and therefore, allow two cells to be taken from the same row. The
second hurdle is that we only know that C' should contain k non-zero entries,
but we do not know their values as each coordinate in C' should correspond to
the number of edges covered by each vertex in the cover. Hence, we have no
good way to define the number of edges that are covered by a given vertex,
without knowing the solution.

We use a rather simple approach to overcome both hurdles. We add padding
rows, in which all cells have zero values, and then set the demand vector C to
be n* - 0"~*, where n is the number of vertices in the graph G. As the number
of rows in M should be)" ¢; = nk, the number of padding rows that we add
is nk — |E| > 0.%

Before proving that a solution whose value is zero exists iff there is a vertex
cover for GG of size k, we first describe the reduction formally. Given a graph
G = (V, E) with n vertices and a natural number k, we construct a matrix
M of size nk x n. We tag each column 1 < ¢ < n by the vertex v;. Let
{el, €2y v, e|E‘} be some ordering on the edges of G. We tag each row 1 <7 <
|E| by e; and we tag each row |E|+ 1 < i < kn by r;. In a row tagged by the
edge e = (v;,v;), the cells in the columns tagged by v; and v; are set to 0, and
all other cells in this row are set to 1. In a row tagged by r;, all cells are set
to 0. Finally, we set the demand vector C' := (c1,¢9,...,Cpn), where ¢; = n for
1 <4 < k and ¢; = 0 otherwise. For example, a graph and the corresponding
instance of the MCAP are described in Figure 3. Clearly, M and C can be

4 If nk < |E|, then no vertex cover of size k exists and the reduction outputs a
fixed instance of the MCAP whose minimal allocation has value greater than 0.

10

constructed in polynomial time from G and k. We next argue the validity of
the reduction, that is, (M, C) has an allocation whose value is zero iff G has
a vertex cover of size k.

First, assume there exists a zero valued solution S for the allocation problem
(M, é) Let P be the permutation implied by S and let H := {v; € V : 1 <
P(i) < k} (that is, H is the set of the k vertices tagging columns which have
n cells in the allocation S). We next argue that H is a vertex cover of size
k. Clearly, |H| = k since P is a permutation. Now, for every edge e; = (u,v)
in E, by the row constraints, one cell in the row tagged e; is in S. Since the
value assigned to all cells in S is 0 and since the only two 0 valued cells in the
row tagged e; appear in the column tagged v and in the column tagged v, one
of these two cells is in S. Since cells in S are only taken from columns v; such
that 1 < P(i) < k, it holds that at least one of u and v is in H.

Second, assume H C V is a vertex cover for G, where |H| = k. We claim that
(M, C) has a solution S whose value is 0. This solution takes cells only in the
k columns which are tagged by vertices from H. For each edge e = (u,v) such
that exactly one of u and v is in H, the cell in the row tagged by e and in the
column tagged by this vertex is in the allocation S. For each edge e = (u,v)
such that both vertices u and v are in H, we arbitrarily decide to select the
zero valued cell in the column tagged by the smallest vertex between u and
v. To guarantee that exactly n cells are selected from each column tagged
by a vertex from H, we augment the above cells by cells from padding rows
such that exactly one cell is selected from each padding row. Since there are
kn — | E| padding rows, such augmentation is possible. O

3.2 Hardness of Block Constraint MCAP

In this section we prove that the two versions of the block constraint MCAP
(with or without the permutation constraint) are NP-hard. We prove the NP-
hardness of the two MCAP version by presenting a reduction from vertex
cover. For clarity, we first describe a first attempt of constructing the reduc-
tion, and explain why it fails. We then show a second attempt fixing the
shortcoming of the first attempt.

First Attempt. In the first attempt, we slightly change our approach in
overcoming the first hurdle described earlier (that is, the problem of choosing
two end-points of an edge). This new approach would enable us to kill two
birds with one stone — overcoming the first hurdle and enabling the selection
of cells from each column to be in one block. Instead of adding padding rows
(as in the proof of Lemma [3.1), we represent each edge e; = (v,u) by two
directed edges e, = (v,u) and e,, = (u,v) and assign a row to each of them.
Furthermore, we add a column representing e;. The row representing e, , has

11

U1 Vg U3 U4|€1 eg e3 eq4|Padd; Padds Padds Paddy Padds; Paddg
w0 111101 1 1] 1 1 1 1 1 1
Uy 01111111 0 0 0 0 0 0
01 1 1{1t 111 0 0 0 0 0 0
€|l 01 11011 1] 1 1 1 1 1 1
Valemasl 1 O 1 1|1 1 0 1| 1 1 1 1 1 1
€1 01T 11101 1] 1 1 1 1 1 1
Cosanlll 10 111 10 1] 1 1 1 1 1 1
Uslepn)1 10 1|1 1 10 1 1 1 1 1 1
11011111} 0 0 0 0 0 0
el 110/ 01 1] 1 1 1 1 1 0
Vglenasl 1 1101 1 1 0 1 1 1 1 1 1
11 10[{1111] 0 0 0 0 0 0

Figure 4. The matrix M’ that the reduction of the first attempt outputs for the graph described in
Figure 3l with & = 2. The demand vector C is <3,3, 16,06>. The cells in bold-face are an allocation
corresponding to the vertex cover {va,v4}.

a 0 value only in the column representing v and in the column representing e;.
The row representing e, , has a 0 value only in the column representing u and
in the column representing e;. Observe that any selection of vertices which
cover at least one of e, , and e, ,, for every such e;, is a vertex cover for G.

Now, any two columns representing two adjacent vertices may both be chosen
with all their zero cells as they do not collide. Moreover, we may reorder the
rows of the matrix so that all rows corresponding to the same column form a
single consequent segment in M’. While this helps us overcome the first hurdle,
it presumably sets the bar for the second one a little higher. It seems we must
be able to predict the number of vertices in the cover that touch each edge as
well as the degree of each vertex. In fact, this is not true, as we may apply
the same method as we did in the first reduction, namely add padding rows to
the matrix and demand d cells from each column representing a vertex, where
d > 1 is at least the maximum degree of any vertex in G. More specifically,
we add d — degree(v) rows in the bottom of the block of rows corresponding
to the vertex v, each such row having zero value cells only in the column
representing v. We finally add “padding” columns to enable d(n — k) more
cells to be allocated, that is, to ensure that for every padding row we can
choose one cell. These “padding” columns have zero cells only in the padding
rows. The demand vector C” is chosen to be d* - 14—k . glVI=k Ay example
of the reduction is given in Figure 4.

Thus far, we described the first attempt of the reduction. The resulting matrix

12

and vector (M’, C") of this first attempt almost form a reduction to the block,
any permutation MCAP. First, it can be checked that if G has a cover of size
k, then (M’,C") has a solution whose value is 0. We would like to claim that
if the input (M’ c) has a solution whose value is 0, then G has a vertex cover
of size k. In an allocation whose value is zero, there are exactly k£ columns
with a block of d cells in the assignment; these columns must be labeled by
vertices. We would like to argue that the set of vertices labeling columns with
a block of d cells in the assignment is a cover. This is true if no column labeled
by a vertex is assigned a single cell (as opposed to d or 0 cells) in the solution.
However, if this is not the case, there might not be a cover of size k£ in G' and
the reduction is not valid. To fix this reduction we need to ensure that in each
column labeled by a vertex, either 0 or d cells are allocated. Furthermore, we

want the reduction to also work for the MCAP version where the permutation
is fixed.

3.2.1 The Correct Reduction

Lemma 3.3 The block, any permutation MCAP and the block, fixed per-
mutation MCAP are NP-Hard.

PROOF. We present a reduction from vertex cover that outputs the pair
(M, C). The matrix M is a column-wise compression of the matrix M’ con-
structed in the first attempt. In M’, every vertex v € V is represented by a
column in M’ and by a segment of rows. All cells within the column of v which
do not appear within the segment of rows representing v have a non-zero value
and, thus, can never be allocated in a 0 valued solution. We compress these
n columns into a single column that no longer represents a single vertex, but
rather has a segment of cells (rows) representing each vertex in V. Thus, ev-
ery vertex is now represented only by a segment of rows and no longer by a
column. We also add a “separation” row between any 2 segments of differ-
ent vertices; this separation row has non-zero entries (except for 1 column we
add). That is, a compressed column has n segments; each segment represents
a different vertex and it contains d zero entries followed by an entry whose
value is 1.

In any zero-value allocation exactly n cells from one segment may be allocated
in each compressed column. In this case we will take the vertex labeling this
segment to the vertex cover. Since every such compressed column allows an
allocation of any segment of rows representing any vertex in V', it suffices to
have exactly k such columns. The padding columns of M’ are compressed in
the following manner. Each of the (first) |E| columns which represents an edge
e = (v,u), namely, had only two zero valued cells, will now have zero valued
cells in all the d — degree(w) complementary rows of the segment of every
vertex w different from v and u. The rest of the padding columns will stay the
same as in M’. Finally, we set C := @ . 19(n—k)1+n

13

We now describe the reduction formally and show that there is a vertex cover
of size k for G iff there is an optimal solution of value 0 for (M, C). The illustra-
tion of the reduction in Figure 5 can help understanding the reduction. Given
a graph G = (V| E) with |V| =n and |E| = m, and a number k, let dyax be
the maximum degree of any vertex in V and set d = max {dpyax, [m/(n — k)] }.
Assume, w.l.o.g., that the degree of every vertex in V is at least 1. We de-
fine a matrix M with (d + 1)n rows and (d + 1)n — (d — 1)k columns. Let
{e1,€e1,...,en} be some ordering on the edges of G.

For convenience, we tag rows and columns of M by names (instead of indices).
Let us begin with the rows. We divide the rows of the matrix into n segments
of d + 1 rows each, where the th segment contains rows corresponding to v,
which are tagged as follows. Let d; be the degree of v, € V and let e, , ... \ €ig,
be the edges touching vy. Given the ¢th row of the (th segment, we tag it rye,,
it1 <t<d, wetagitry;if d,+1<t<d, and we tag it Sep, if t =d + 1.

We next explain how we tag the columns. The first & columns are the “com-
pressed” vertex columns. We tag each column 1 < 5 < k by h;. The next m
columns are the “edge” columns. We tag each column £ +1 < 5 < k+m by
ej_k. The following d(n — k) —m columns are the “padding” columns. We tag
each column k+m+1 < j < k+d(n — k) by Padd;_ (4. Finally, the last n
columns are the “extra” columns which are used for allocation of cells in the
separating rows. We tag each column k+d(n—k)+1<j<k+dn—k)+n
by Extra;_(x+d(n—k)). From here on we use the tags instead of indices, e.g., we
write M (Sep;, e;) instead of Mgy ;1.

We next describe the entries of M. All row segments are of the same form, thus
we confine our description to the ith row segment (which represents v; € V).
In the separation row Sep, we set the cell of the column tagged Extra; to 0 and
we set all other cells to zero. We next describe the first d rows. The reader is
encouraged to look at the example in Figure 5 while reading the construction.

e For 1 < j <k (the compressed vertex columns), we set all cells to 0 (namely,
M(7; 4, h;) := 0 for all).

e For an edge column tagged by e = (v;,v') or e = (v/, v;), we set M (r;.,e) :=
0. We set all other cells within this column to 1.

e For an edge column tagged by e = (v/,v”) where v/,v" # v;, we set all
padding rows (that is, rows tagged r;,) within the segment of v; to 0 and
all other (edge) rows to 1.

e We set cells of columns tagged by Padd; for some j to 1 if the row they are
in represents an edge and 0 otherwise.

e Finally, we set all entries within the last segment of columns (tagged Extra;
for some j) to 1.

If we examine the patterns of the columns of M, we find that the compressed
columns are made of n blocks of d zeros, each followed by a single one value.
On the other hand, there are no blocks of d consecutive zeros in any other
type of column in M. Thus, the following observation can be made.

14

hy holey e e3 eq|Padd; Padds|Extra; Extras Extrag Extray
e |0 001 1 1) 1 1 1 1 1 1
vi|r2 |0 0100 0] O 0 1 1 1 1
30 01 000 O 0 1 1 1 1
Sepy/1 1|1 1 1 1| 1 1 0 1 1 1
T2 |0 010 1 1 1| 1 1 1 1 1 1
Vg|T26, (|0 01 0 1 1| 1 1 1 1 1 1
T2e |0 01 1 0 1| 1 1 1 1 1 1
Sepol1 1)1 1 1 1| 1 1 1 0 1 1
T3¢0 0]1 10 1| 1 1 1 1 1 1
v3|736, (0 0[1 0 1 0 1 1 1 1 1 1
rs3 {0 00 0 1 1| O 0 1 1 1 1
Seps[|1 111 1 1 1| 1 1 1 1 0 1
Tie, |0 O]1 0 1 1) 1 1 1 1 1 1
V4|76, [0 O] 1 1 0 1 1 1 1 1 1
ra3 |0 O[O0 1 0 1] 0O 0 1 1 1 1
Sep,(1 1|1 1 1 1| 1 1 1 1 1 0

Figure 9. The matrix that the reduction outputs for the graph described in Figure [3 with k& = 2. The
demand vector is € = <37 3, 110>. The cells in bold-face are an allocation corresponding to the vertex cover
{va,v4}.

Observation 3.4 blocks of d consecutive cells of value 0 appear only within
the first k columns and only within a segment of rows of some vertex, namely
rows tagged Tig for some 1 <1 < n.

We set the demand vector to be C = <cl, Ca, ... ,c(d+1)n,(d,1)k>, where ¢; = d
if 1 <i<kandc; =1 otherwise.

We now show that there is a vertex cover of size k for GG iff there is an optimal
solution of value 0 for (M, C). By Observation 3.4 every zero valued solution
for the any permutation MCAP is also a valid zero valued solution for the
fixed permutation MCAP, thus it suffices to only consider fixed permutation

MCAP in our proof. Assume there exists a zero valued solution S for (M, C).
Let

H:={v, € V:M(riz hj) € S for some z and some 1 < j < k}.
We claim that H is a vertex cover of size k for G. Clearly, |H| = k. Note that by

Observation [3.4), for every 1 < j < k, all cells allocated in the column tagged

15

h; are within a single segment of rows. Namely, there exists some 1 < i < n
such that all d allocated cells are of the form M(r; ., h;). Moreover, no cell
M(rir 4, h;) for i # i is in S. Now, given an edge e = (v, v;), assume v, ¢ H.
Hence no cell is allocated in the row tagged ;. within the first & columns.
Since the only other zero valued cell of this row is M(rs.,e), it has to be
allocated. Therefore, the cell M(r;.,e) which appears in the same column is
not in S. Thus, since S must contain a zero valued cell from the row tagged
s and since all other zero cells in this row (other than the on in column e)
appear within the first k£ columns, there is one which is allocated within the
columns tagged by h;. In other words, there exists a 0 < j < k such that
M(rye, h;) € S and, hence, v, € H, that is, the edge e is covered.

For the other direction, assume H = {v;,v;,,...v;, } € V is a vertex cover
for G. We construct a legal zero value allocation for (M, C). First, we set
Skxtra = {M(Sep,;, Extra;) : 1 <1i < n}, covering all separating rows. Next,
we set Sy, == {M(r;,2, he)} for 1 <t < k, that is, Sy, is the zero-segment
representing v;, in hy, and we set Sy = J Sp,. We also set Sg 1= {M(r;.,e) :
v; ¢ H and e = (v;,v) for some v € V'}. Note that if e = (v;,v), where v; ¢ H,
then v € H and Sg contains at most one cell from each column tagged by an
edge.

We have covered all rows except for padding rows of vertices not in the cover H,
that is, rows tagged by r; j for v; ¢ H and d;+1 < j < d. Furthermore, we have
covered all columns except for columns tagged by Padd; and columns tagged
by edges e = (u,v) where both u and v are in H (otherwise one of the cells
in the column is in Sg). However, for every row tagged r;; where v; ¢ H and
d; <t < d and for every column tagged by e = (u,v) where v; # u,v we have
M(r;s,e) = M(r;4,Padd;) = 0 for any j. That is, the remaining submatrix of
M is a square matrix whose entries are all 0. Thus, we can choose an allocation
Spada containing exactly one cell from each row of this submatrix and one cell
from each column. Clearly, all cells in S := Sy U Sg U Spaqa U SExtra have 0
value and, therefore, the total value of this solution is 0.

Finally, we show that S is a legal solution. One can easily observe that no row
in M has more than one cell allocated in it and, since the number of allocated
cells is exactly the number of rows, in each row there is exactly one cell. From
the definition of S it follows that in each of the first k£ columns of M there
are d consecutive cells allocated and in any other column exactly one cell is
allocated. a

3.8 Hardness of Approximation

The zero-one matrices constructed in the reductions of Lemmas 3.1, 3.3 yield a
somewhat trivial multiplicative inapproximability result. Naturally, any mul-
tiplicative approximation algorithm must always return a zero valued solution

16

whenever such solutions exist. Thus, our reductions imply that any such algo-
rithm would solve the Vertex-Cover problem. In the following lemma we show
that the inapproximability of MCAP is not only a trivial result of the zero
valued solutions defined in the aforementioned reductions. The proof of the
lemma is similar to the proof that the traveling sales person (TSP) problem
(without the triangular inequality) cannot be approximated [9)].

Lemma 3.5 Let p(a) < 2PW@ . [f P+ NP, then for the no block, any
permutation MCAP, the block, any permutation MCAP, and the block,
fixed permutation MCAP, there is no polynomial-time algorithm that p(a)-
approximates the problem on instances (M, é) where M has a rows.

PROOF. Take the instance (M, C_") generated by the reduction in Lemma 3.1
or Lemma 3.3 and replace any 0 entry by 1, and replace any non-zero entry
by 2n?p(n). If we started with a graph G which has a vertex cover of size k,
there is an allocation whose value is at most n?. If we started with a graph
G which does not have a vertex cover of size k, in every legal allocation in
(M, C) there is a non-zero cell and the value of the minimum allocation in
(M, C) is at least 2n2p(n). If there is an approximation algorithm for one of
the three versions of MCAP, it would distinguish between the case that G
has a vertex cover of size k and the case that G does not have a vertex cover
of size k. a

If in an instance with a rows, the matrix contains values only in the range
1,...,H (for some value H), then the value of an optimal allocation is at
least a while the value of any allocation is at most aH, thus a multiplicative
approximation with ratio H is trivial. This is the reason that in our reduction
we replace 1 by a big value (namely, 2n?p(n)). One may also consider additive
approximability of the aforementioned cases of MCAP. In instances where
the matrix contains values only in the range 1, ..., H (for some value H), any
solution is an a- H additive approximation. On the other hand, our reductions
show that no additive approximation better than H may be achieved.

References

[1] 802.16-2004: IEEE standard for local and metropolitan area networks
part 16: Air interface for fixed broadband wireless access systems (2004).
2] 802.16e-2005: IEEE standard for local and metropolitan area networks
part 16: Air interface for fixed and mobile broadband wireless access
systems, amendment 2: Physical and medium access control layers for

combined fixed and mobile operation in licensed bands and corrigendum
1 (2006).

17

Y. Ben-Shimol, E. Chai, 1. Kitroser, Efficient mapping of voice calls in
wireless OFDMA systems, IEEE Communication Letters 10 (9) (2006)
641 — 643.

Y. Ben-Shimol, I. Kitroser, Y. Dinitz, Two dimensional mapping for wire-
less OFDMA systems, IEEE Transactions on Broadcasting 52 (3) (2006)
388 396.

R. Karp, Reducibility among combinatorial problems, in: R. Miller,
J. Thatcher (eds.), Complexity of Computer Computations, Plenum
Press, 1972, pp. 85-103.

H. W. Kuhn, The Hungarian method for assignment problem, Naval Res.
Logist. Quart. 2 (1955) 83-98.

N. Menakerman, R. Rom, Bin packing problems with item fragmentation,
Tech. Rep. CCIT.342, Faculty of Electrical Engineering, Technion (2001).
N. Naaman, R. Rom, Analysis of packet scheduling with fragmentation,
Proceedings of Infocom’02, New York (2002) 824 — 831.

S. Sahni, T. Gonzalez, P-complete approximation problems, J. ACM
23 (3) (1976) 555-565.

H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for packing
with item fragmentation, in: Proceeding of the 3rd WAOA, vol. 3879 of
Lecture Notes in Computer Science, 2006, pp. 334-347.

D. B. Shmoys, E. Tardos, An approximation algorithm for the generalized
assignment problem, Math. Program. 62 (3) (1993) 461-474.

18

