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Abstract. Understanding the minimal assumptions required for carry-
ing out cryptographic tasks is one of the fundamental goals of theoretical
cryptography. A rich body of work has been dedicated to understanding
the complexity of cryptographic tasks in the context of (semi-honest) se-
cure two-party computation. Much of this work has focused on the char-
acterization of trivial and complete functionalities (resp., functionalities
that can be securely implemented unconditionally, and functionalities
that can be used to securely compute all functionalities).
All previous works define reductions via an ideal implementation of the
functionality; i.e., f reduces to g if one can implement f using an ideal
box (or oracle) that computes the function g and returns the output to
both parties. Such a reduction models the computation of f as an atomic
operation. However, in the real-world, protocols proceed in rounds, and
the output is not learned by the parties simultaneously. In this paper we
show that this distinction is significant. Specifically, we show that there
exist symmetric functionalities (where both parties receive the same out-
come), that are neither trivial nor complete under “ideal-box reductions”,
and yet the existence of a constant-round protocol for securely computing
such a functionality implies infinitely-often oblivious transfer (meaning
that it is secure for infinitely-many n’s). In light of the above, we propose
an alternative definitional infrastructure for studying the triviality and
completeness of functionalities.

1 Introduction

Secure computation and completeness. In the setting of secure two-party
computation, two parties with respective private inputs x and y, wish to compute
a function f of their inputs. The computation should preserve a number of
security properties, like privacy (meaning that nothing but the specified output
is learned), correctness and more.

In the late 1980s, it was shown that every function can be securely computed
in the presence of semi-honest and malicious adversaries, assuming the existence
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of enhanced trapdoor permutations [18, 6]. Soon after, it was shown that any
function can be securely computed, given an ideal box for computing the obliv-
ious transfer function [9]. This work demonstrated that there exist “complete”
functions for secure computation; that is, functions that can be used to securely
compute all other functions. Such functions are of great interest. On the one
hand, when attempting to base secure computation on weaker hardness assump-
tions, it suffices to construct a secure protocol for a complete function based
on some weaker assumption, since it will imply that this assumption suffices for
securely computing all functions. On the other hand, it is immediate that a com-
plete function is the “hardest” to compute, at least with respect to the minimum
hardness assumption. Due to the above, much research has been carried out in
an attempt to classify functions as complete or not, and as trivial or not (where
triviality means that it can be securely computed without any assumption).

The complexity of secure computation. Currently, we have a good picture
regarding the complexity of secure computation, through the aforementioned
research of completeness. For example, we know that in the setting of asymmetric
functionalities (where only one of the two parties receives output), every two-
party (deterministic) asymmetric function is either complete or trivial [1, 11].
Thus, no non-trivial asymmetric function can be securely computed under an
assumption weaker than that needed for securely computing oblivious transfer.

However, in the setting of symmetric functionalities, where both parties re-
ceive the same output, the picture is more complex [10, 13, 15]. For example,
unlike the asymmetric setting, there exist (deterministic) symmetric functions
that are neither complete nor trivial; see Figure 1 below for an example of such
a function. This begs the following fundamental question:

What hardness assumptions are sufficient and necessary for securely
computing functions that are neither complete nor trivial?

The starting point of this work is the above question. We stress that although
Kilian [10] separated these functions from all complete functions, hinting that
it may be possible to devise secure protocols for such functions relying on as-
sumptions that are strictly weaker than those needed for oblivious transfer, the
only known protocols for securely computing non-trivial functions are general
protocols that rely on hardness assumptions that can be used to compute any
function including oblivious transfer.

Black-box reductions and black-box separations. As we have mentioned,
a large body of work has been dedicated to understanding the complexity of
cryptographic tasks in the context of (semi-honest) secure two-party computa-
tion (see, e.g., [1, 9–11, 2, 7, 15]). The idea underlying much of this work is that
if the possibility to securely compute a functionality f1 implies the possibility
to securely compute a functionality f2, then f1 is at least as hard as f2. It is
then said that f2 reduces to f1. A functionality f is called complete if all other
functionalities reduce to f . The question of how to define the notion of reduction
is of great importance to the implication of these results.



All previous works define a reduction via an ideal implementation of a func-
tion; i.e., f2 reduces to f1 if a secure protocol for computing f2 can be constructed
given an ideal box (trusted party or oracle) that computes f1 and gives the out-
puts to both parties simultaneously.1 The advantage of (black-box) reductions
of the above type is that they provide a constructive way of securely computing
one functionality given an implementation of another. However, the disadvan-
tage of black-box reductions is that a separation (i.e., a proof that one function
does not reduce to another) does not necessary imply that one cannot construct
a secure protocol for one function given a secure protocol from the other. This
is due to the fact that a reduction may be nonblack-box.

Our contributions. In this work we give substantial evidence that the pic-
ture of computational hardness of securely computing two-party functionalities
in the presence of semi-honest adversaries is different to that drawn by the char-
acterizations of completeness of [10, 13]. Specifically, we show that there exist
symmetric functionalities f (i.e., where both parties get the same output), that
are not ideal-box-complete (i.e., OT cannot be implemented using an ideal-box
computing f) but may be in some sense as hard to obtain as OT. Specifically,
we prove the following:

Theorem 1.1 (informal). If there exists a constant round protocol π that se-
curely computes a symmetric non-trivial functionality f over a constant-size do-
main, in the presence of semi-honest adversaries, then there exists an infinitely-
often-OT that is secure in the presence of semi-honest uniform adversaries.2

Needless to say, Theorem 1.1 is of interest for functionalities f that are not
complete; as we have mentioned, such functionalities exist.

Our main observation in proving this result is that in real-world protocols,
an ideal-box that simultaneously provides outputs to both parties does not exist.
Rather, parties learn their outputs gradually, and hence, in any constant-round
protocol, there must be a round in which one party learns substantial information
before the other party does. Thus, essentially there is no difference between the
symmetric setting (where both parties receive output and there are functions
that are neither complete nor trivial) and the asymmetric setting (where only
one party receives output and all functions are either trivial or complete).

Alternative formulation of completeness – existential completeness.
In light of the above, we propose a new definition of completeness that is not
black box. We define the notion of an “achievable class” of a given functional-
ity f . Informally speaking, the achievable class of a functionality f contains all

1 We stress that the issue of simultaneity has nothing to do with fairness since we
consider semi-honest adversaries. Rather, the important point is that both parties
receive the same information and it is not possible for one party to learn the output
of the function while the other does not. If this were not the case, and only one party
receives output then the symmetric setting reduces to the asymmetric setting where
all functionalities are either trivial or complete.

2 Infinitely-often-OT is a protocol for computing OT for which correctness and security
hold for infinitely many n’s (rather than for all sufficiently large n).



functionalities that can be securely computed, assuming that f can be securely
computed. We use this notion in the natural way in order to redefine reductions,
and trivial and complete functionalities. Our formulation has the disadvantage
of being completely non-constructive. However, it has the advantage of providing
a more accurate picture regarding the hardness assumptions required for secure
computation.

Related Work. As we have already mentioned, completeness in secure two-
party computation was investigated in a large body of work [2, 13, 10, 1, 12, 14, 11,
15, 16, 7]. We discuss a few that are more relevant to our discussion. Kilian [10]
and Kushilevitz [13] consider the symmetric model and give criteria for the
existence of unconditionally secure protocols [13] and for completeness [10]. Maji
et al. [15] extended the discussion of the symmetric model to the UC-setting.
Beimel, Malkin and Micali [1] considered the asymmetric model. They prove a
zero-one law for completeness vs. triviality in this model. Almost all of these
works consider functions with a constant size domain and information-theoretic
security. The only exception is [7] who deals with computational security in the
asymmetric model.

2 Definitions

2.1 Preliminaries

A function µ : N → N is negligible if for every positive polynomial p(·) and all
sufficiently large n it holds that µ(n) < 1

p(n) . We use the abbreviation PPT to

denote probabilistic polynomial-time. For an integer `, define [`] = {1, . . . , `}. A
probability ensemble X = {X (a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random

variables indexed by a and n. (The value a will represent the parties’ inputs and
n the security parameter. All polynomials that we will consider will be with
respect to the security parameter, unless explicitly stated otherwise; specifically,
all polynomial time machines will be polynomial in the security parameter.) We
let λ denote the empty word.

Two ensembles X = {X (a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N
are computationally indistinguishable, denoted X

c≡ Y , if for every family {Cn}n∈N
of polynomial-size circuits, there exists a negligible function µ (·) such that for
every a ∈ {0, 1}∗ and every n ∈ N,∣∣∣Pr [Cn(X (a, n)) = 1]− Pr [Cn(Y (a, n)) = 1]

∣∣∣ < µ (n) .

The ensemblesX and Y are computationally indistinguishable by uniform machines,

denoted X
C≡UY , if the above holds for every PPT distinguisher D.

2.2 Secure Two-Party Computation and Oblivious Transfer

We follow the standard definition of secure two party computation for semi-
honest adversaries, as it appears in [5]. In brief, a two-party protocol π is defined
by two interactive probabilistic polynomial-time Turing machines A and B. The



two Turing machines, called parties, have the security parameter 1n as their joint
input and have private inputs, denoted x and y for A and B, respectively. The
computation proceeds in rounds. In each round of the protocol, one of the parties
is active and the other party is idle. If party P ∈ {A,B} is active in round i, then
in this round P writes some value OutiP on its output tape, and sends a message
mi to the other party. Without loss of generality, we assume that A is always
active in the odd rounds in π and B in the even rounds. The number of rounds in
the protocol is expressed as some function r(n) in the security parameter (where
r(n) is bounded by a polynomial).

The view of a party in an execution of the protocol contains its private
input, its random string, and the messages it received throughout this exe-
cution. The random variable Viewπ

A(x, y, 1n) (respectively Viewπ
B(x, y, 1n)) de-

scribes the view of A (resp. B) when executing π on inputs (x, y) (with se-
curity parameter n). The output of an execution of π on (x, y) (with secu-
rity parameter n) is the pair of values written on the output tapes of the
parties when the protocol execution terminates. This pair is described by the
random variable Outputπ (x, y, 1n) = (OutputπA (x, y, 1n) ,OutputπB (x, y, 1n)),
where OutputπP (x, y, 1n) is the output of party P ∈ {A,B} in this execution,
and is implicit in the view of P .

In this work, we consider deterministic functionalities over a finite domain.
We therefore provide the definition of security only for deterministic functional-
ities; see [5] for a motivating discussion regarding the definition.

Definition 2.1 (security for deterministic functionalities). A protocol π =
〈A,B〉 securely computes a deterministic functionality f = (fA, fB) in the pres-
ence of semi-honest adversaries if the following hold:

Correctness: There exists a negligible function µ(·), such that for every n and
every pair of inputs x, y, it holds that

Pr [Outputπ(x, y, 1n) = f(x, y)] ≥ 1− µ (n) . (1)

where the probability is taken over the random coins of the parties.
Privacy: There exist two probabilistic polynomial-time (in the security param-

eter) algorithms SA,SB (called “simulators”), such that:

{SA (x, fA(x, y), 1n)}x,y∈{0,1}∗;n∈N
C≡ {Viewπ

A (x, y, 1n)}x,y∈{0,1}∗;n∈N , (2)

{SB (y, fB(x, y), 1n)}x,y∈{0,1}∗;n∈N
C≡ {Viewπ

B (x, y, 1n)}x,y∈{0,1}∗;n∈N . (3)

For most of this paper, we will consider functionalities where both parties
receive the same output, meaning that fA = fB . We call such functions symmetric
and we denote by f(x, y) the output that both parties receive. We will also only
consider the semi-honest model here, and therefore omit this qualification from
hereon.

Oblivious transfer – naive-OT variant. The oblivious transfer functionality
(OT) is one of the most important cryptographic primitives and is known to be
complete for general two-party computation [19, 6]. There are several equivalent



versions of OT; the most common being Rabin-OT [17] and 1-out-of-2 OT [3].
In this paper we use a slightly different version presented in [7], called Naive-

OT, defined by the functionality OT(b, c) =

{
(λ, λ) if c = 0
(λ, b) if c = 1

, meaning that the

sender never learns anything (recall that λ is the empty string), and the receiver
learns the sender’s bit b if its choice-bit c equals 1, but does not learn anything
if c = 0. This is the same as Rabin-OT except that the receiver chooses whether
or not to receive the sender’s bit b. In the semi-honest model it is equivalent to
Rabin-OT (and to 1-out-of-2-OT).

2.3 Uniform Infinitely-Often Security

Our main result is a proof that the existence of a constant-round protocol for
functionalities that are neither complete nor trivial almost implies oblivious
transfer. The “almost” in this sentence is due to the fact that we can only
prove that it implies oblivious transfer that is secure for infinitely many n’s,
in contrast to all sufficiently large n’s. In addition, we can only prove that the
oblivious transfer is secure in the presence of uniform distinguishers. We therefore
need to define this weaker notion of security.

Definition 2.2 (uniform infinitely-often security). A protocol π securely
computes a deterministic functionality f in the presence of semi-honest adver-
saries with uniform infinitely-often security if there exists an infinite subset N ⊆ N
such that Equations (1), (2) and (3) hold for every n ∈ N , and Equations (2)
and (3) hold with respect to uniform distinguishers.

We stress that the correctness and privacy conditions must all hold for every
n ∈ N (it does not suffice to require infinitely many n’s for which each require-
ment holds since it is possible that they may hold for different n’s in which case
the function will be trivial).

3 Our Main Technical Result

In this section, we prove Theorem 1.1. In order to formally state the theorem
and our result, we first need to define the class of functions that we consider.
We therefore begin with preliminaries.

3.1 Preliminaries

Our theorem applies to all non-trivial functionalities, as characterized by Kushile-
vitz [13]. This characterization uses the notion of “decomposition” of a function.
We now define this notion.

Definition 3.1 (equivalence relation ≡ over inputs). Let X,Y, Z ⊆ {0, 1}∗,
and let f : X × Y → Z. Two inputs x1, x2 ∈ X existentially coincide, denoted
x1 ∼ x2, if there exists an input y ∈ Y such that f(x1, y) = f(x2, y). We define
an equivalence relation ≡ over X to be the transitive closure of the relation ∼
over all x ∈ X. The relations ∼ and ≡ are defined over Y similarly.



Definition 3.2 (strongly non-decomposable functions). A function g :
X × Y → Z is strongly non-decomposable if it is not monochromatic, all x ∈ X
are equivalent, and all y ∈ Y are equivalent.

We refer to [13] in order to see why this is called non-decomposable. The
binary OR and AND functions are strongly non-decomposable, as is the function
fKUSH defined below:

y1 y2 y3

x1 0 0 1

x2 3 4 1

x3 3 2 2

Fig. 1. Kushilevitz’s function fKUSH

A strongly non-decomposable function has the property that all inputs are
equivalent. We now define a non-decomposable function simply to be a function
which has a subfunction that is strongly non-decomposable.

Definition 3.3 (non-decomposable functions). A symmetric function f :
X × Y → Z is non-decomposable if there exist X ′ ⊆ X and Y ′ ⊆ Y such that f
restricted to X ′ and Y ′ is strongly non-decomposable; else it is decomposable.

We remark that Kushilevitz [13] proved that a function is non-trivial if and
only if it is non-decomposable. The function fKUSH is of particular interest since
it is neither trivial (as shown by [13]) nor complete (as shown by [10]).

3.2 The Theorem and Proof

Let f be a symmetric non-decomposable functionality with domain of constant
size. We show that the existence of a constant-round protocol for computing f
implies the existence of a weak variant of oblivious transfer. The idea behind
the proof is to run a protocol π for f until the first round in which one of the
parties learns meaningful information about the input of the other party. Since
this is the first round that something is learned and only one party can learn
information in any single round, we have that one party has learned something
and the other has not. This asymmetry of information suffices for us to construct
oblivious transfer.

Our proof proceeds in three stages. First, we prove that a round as described
above exists. Intuitively, this is the case since before the protocol execution
neither party has any information about the other party’s input, but at the end
of the execution each party learns significant information about the other party’s
input. Next, we show that a weak form of oblivious transfer can be constructed
from any protocol with such a round (in actuality, we need to prove that such
a round exists on a special subset of inputs called a minor, and we demonstrate
this in the first step). The OT that we construct is weak in the sense that it is
only correct with noticeable probability. Finally, we show how to boost the weak
correctness of the OT to fully correct oblivious transfer.



We stress that we do not actually obtain a full oblivious transfer protocol.
Rather, our protocol is only secure infinitely often; see Definition 2.2. We explain
why this is the case at the end of Section 3.3.

Theorem 3.1. If there exists a constant round protocol π that securely computes
a symmetric, deterministic, non-decomposable functionality f (over a constant-
size domain), then there exists a uniform infinitely-often OT protocol.

Proof: Recall that a non-decomposable functionality is a function with a
subset of inputs that defines a strongly non-decomposable functionality. Since we
consider the semi-honest model and so parties use only their prescribed inputs, it
follows that the existence of a secure protocol for a non-decomposable function
implies the existence of a secure protocol for the strongly non-decomposable
function defined over the appropriate subset. It thus suffices to prove the theorem
for a strongly non-decomposable function.

As we have described above, there are three steps in the proof of this theorem.
In Section 3.3 we prove the first step. Specifically, in Lemma 3.1 we prove that
there exists an “exclusive revelation round” which is a round in which one party
has learned while the other has not, and then in Lemma 3.2 we prove that such
a round must exist for inputs that form an insecure minor (defined below). We
call this an “exclusive revelation minor”. Next in Section 3.4 we prove that the
existence of an exclusive revelation minor implies the existence of OT with weak
correctness, and finally in Section 3.5 we explain how to boost the correctness
and thus obtain full OT (with infinitely-often uniform security). ut

3.3 Step 1– the Existence of an Exclusive Revelation Minor

In order to prove our result we exploit the fact that parties obtain information
about the output of a computation gradually and that one party learns sub-
stantial information before the other party does. We begin with some notation
regarding partial protocol executions. For an r-round protocol π and a func-
tion ν : N → N such that ν(n) ≤ r(n) for all n ∈ N, we denote by πν the
protocol obtained by halting π after round ν(n) is completed. Specifically, the
random variables Viewπν

A (x, y, 1n) and Viewπν
B (x, y, 1n) describe the views of A

and B (respectively) in a random execution of πν on inputs (x, y) with security
parameter n.

We next formally define what it means for a party to obtain non-trivial
information about the other party’s input.

Definition 3.4 (distinguishing between inputs). Let π be a c-round pro-
tocol for computing a functionality f (where c is some function of the security
parameter n), and fix i ∈ N. For a triple x, y, y′ of inputs, we say that A(x)
distinguishes between y and y′ at round i if there exists a polynomial p(·) and a
(uniform) PPT machine D such that for infinitely many n’s,

|Pr [D (Viewπi
A (x, y, 1n) , 1n) = 1]− Pr [D (Viewπi

A (x, y′, 1n) , 1n) = 1]| ≥ 1

p(n)



For a triple x, x′, y of inputs we define that B(y) distinguishes between x and x′

at round i in an analogous way.

As we will see below, it is crucial that D be a uniform PPT machine, since
the parties need to run D in the OT protocol that we construct. For simplicity
(and since it suffices for our needs), the above definition considers a fixed round
i. This can be easily generalized to any (polynomial time computable) function
i : N→ N such that i(n) ≤ c(n) for every n.

We now define the notion of an exclusive revelation round, which is just a
round in which one party can distinguish inputs of the other, while the other
cannot. Our formulation of this uses Definition 3.4.

Definition 3.5 (exclusive-revelation round). Let π be a protocol for com-
puting a symmetric functionality f . Then, π has an exclusive revelation at round
i if one of the following holds:

1. There exists a triplet x, y, y′ such that A(x) distinguishes between y and y′

at round i, and B(y) does not distinguish between x and x′ at round i for
any triplet x, x′, y (we say that x, y, y′ define the revelation round); or

2. There exists a triplet x, x′, y such that B(y) distinguishes between x and x′

at round i and, A(x) does not distinguish between y and y′ at round i for
any triplet x, y, y′ (we say that x, x′, y define the revelation round).

Protocol π has an exclusive-revelation round if there exists 0 ≤ i ≤ c, such that π
has an exclusive revelation at round i.

We are now ready to prove that any constant-round protocol for computing
a non-constant function (i.e., a function that has at least two different outputs)
has an exclusive-revelation round.

Lemma 3.1. Let f be a symmetric functionality that is not constant (and has
domain of constant size). Let π be a constant-round protocol for securely com-
puting f . Then, π has an exclusive-revelation round.

Proof: For every (round number) i ≤ c, every uniform PPT machine (distin-
guisher) D, and every triplet x, x′, y (recall that there is a constant number of
such triplets), we define

εi,Dx,x′,y(n) = |Pr [D (Viewπi
B (x, y, 1n) , 1n) = 1]− Pr [D (Viewπi

B (x′, y, 1n) , 1n) = 1]|

and let rDx,x′,y be the minimal round number 0 ≤ i ≤ c for which there exists a

polynomial p(·) such that εi,Dx,x′,y(n) > 1
p(n) for infinitely many n’s. If no such i ex-

ists, we let rDx,x′,y = c+1. Note that this means that rDx,x′,y is the first round such
that the PPT machine D can distinguish the ensembles {Viewπi

B (x, y, 1n)}n∈N
and {Viewπi

B (x′, y, 1n)}n∈N.

We further define rx,x′,y = minD
{
rDx,x′,y

}
(this is well defined, as every

rDx,x′,y ∈ [c + 1]). Observe that this means that rx,x′,y is the minimal round
for which there exists any uniform PPT machine that can distinguish the two



ensembles (equivalently, the minimal round for which B(y) distinguishes between
x and x′). For every triplet x, y, y′, we define rx,y,y′ analogously.

By the correctness of the protocol, for every triplet x, x′, y such that f(x, y) 6=
f(x′, y), the view of both parties after the last round (that is, round c) implies
the output and hence there exists a uniform PPT machine D and a negligible
function µ(·) such that for all sufficiently large n’s, εc,Dx,x′,y(n) ≥ 1 − µ(n). This
in turn implies that for such triplets, there exists a PPT machine D for which
rDx,x′,y ≤ c, and hence rx,x′,y ≤ c. Similarly, for every triplet x, y, y′ such that
f(x, y) 6= f(x, y′), it holds that rx,y,y′ ≤ c. Since f is not constant, there either
exists a triplet of the former type or of the latter type.

Now, define i∗A = minx,y,y′ {rx,y,y′} and i∗B = minx,x′,y {rx,x′,y}. Note that
i∗A is the minimal round for which there exists a triplet x, y, y′ such that A(x)
distinguishes between y and y′, and i∗B is the minimal round for which there
exists a triplet x, x′, y such that B(y) distinguishes between x and x′. Since f is
not constant, it holds that either i∗A ≤ c or i∗B ≤ c (or both). We claim that π
has exclusive revelation at either round i∗A or at round i∗B .

Assume without loss of generality that i∗A ≤ i∗B ; we show that i∗A < i∗B . It
suffices to show that i∗A < i∗B , since by the definition of i∗B we know that B(y)
does not distinguish between x and x′ at any round i < i∗B and for any triplet
x, x′, y. A crucial observation is that the view of a party does not change in
the round that it is active, and hence, neither does its distinguishing capability.
Hence, by the minimality of i∗A, it must be that B is the one sending a message
in round i∗A, since otherwise A would be able to distinguish already in round
i∗A − 1. This means that B’s view does not change in round i∗A, and hence, by
the minimality of i∗B it cannot be that i∗A = i∗B . The case that i∗B ≤ i∗A is dealt
with analogously. ut

We complete this step of the proof by showing that when a strongly non-
decomposable function has a protocol with an exclusive-revelation round, this
round is defined by inputs that form an insecure minor. An insecure minor is a
tuple of inputs x, x′, y, y′ such that f(x, y) = f(x, y′) and f(x′, y) 6= f(x′, y′)
(X-minor), or f(x, y) = f(x′, y) and f(x, y′) 6= f(x′, y′) (Y -minor).

Definition 3.6 (exclusive-revelation minor). Let π be a protocol for com-
puting a symmetric functionality f . If there exists an X-minor x, x′, y, y′ with
respect to f such that x′, y, y′ define an exclusive revelation round for π, then we
say that π has an exclusive-revelation X-minor; an exclusive-revelation Y -minor is
defined analogously. We say that π has an exclusive-revelation minor if it has an
exclusive revelation X-minor or an exclusive revelation Y -minor.

The next lemma states that strongly non-decomposable functions have the
property that the existence of an exclusive-revelation round implies the existence
of an exclusive-revelation minor.

Lemma 3.2. Let π be a protocol that securely computes a strongly non-decompos-
able symmetric function f with constant-size domain. If π has an exclusive-
revelation round then it has an exclusive-revelation minor.



Proof: The proof follows by analyzing the general structure of strongly non-
decomposable functions. Let f be any symmetric strongly non-decomposable
function with a constant-size domain. Assume that there exist xj , yk, y` (with
k < `) that define an exclusive revelation at round i; that is, A(xj) distinguishes
between yk and y` at round i. We show that this implies that π has an exclusive
revelation X-minor. Since f is a strongly non-decomposable function, it holds
that yk ≡ y`. Let yi1 , . . . , yit be such that yk ∼ yi1 ∼ . . . ∼ yit ∼ y` and let
yi0 = yk and yit+1 = y`. A(xj) distinguishes between yi0 and yit+1 at round i, and
since t is a constant (recall that f has a constant-size domain), there exists some
h ∈ [t+1] such thatA(xj) distinguishes between yih−1

and yih at round i. Now, by
definition, since yih−1

∼ yih , there exists some x such that f(x, yih−1
) = f(x, yih).

Hence, x, xj , yih−1
, yih forms an exclusive-revelation X-minor. The proof for the

case that B distinguishes is analogous. ut

Infinitely-often. Observe that the existence of an exclusive revelation minor
means that there exists an insecure minor and a round of the protocol such
that one party can distinguish the other party’s inputs at this round while the
other cannot. We stress that a party distinguishes inputs if it has polynomial
advantage in guessing the input for infinitely many n’s. It would be preferable
to prove this for all sufficiently large n’s, since this would enable us to later
construct a fully secure oblivious transfer protocol, and not just an infinitely-
often secure oblivious transfer protocol. However, we are unable to do this since
we need to utilize the existence of a round where one party has learned something
and the other has not learned anything. We prove this by taking the first such
round, and this guarantees that in any previous round the other party has not
learned anything, except possibly for a finite number of n’s. This means that it
did not learn for infinitely many of the n’s in which the other party did learn,
as required. In contrast, if we were to take the first round in which one party
learns for all sufficiently large n’s, then it is possible that the other party has
learned for infinitely many of these n’s in a previous round, and so security will
not be guaranteed.

Constant-round. We use the assumption that π is constant-round in the proof
that π has an exclusive-revelation round (Lemma 3.1). Recall that an exclusive-
revelation round is the first round that a party can distinguish between the
inputs of the other party. If the number of rounds in π is non-constant, then
for every n the concrete number of rounds in the protocol is different and hence
we would have to define an “exclusive-revelation function”; that is, a function
ν : N → round number, that defines the first round (as a function of n) that a
party can distinguish between the inputs of the other party. It is not clear how
to define such a function, and moreover, how to prove the existence of it.

Constant-size domain. We restrict ourselves to functions with constant-size
domains (i.e., not dependent on the security parameter) in order to be consistent
with previous works studying completeness and triviality of symmetric functions
([10, 13]). Extending the study of completeness to functions with non-constant-
size domains is beyond the scope of this paper.



3.4 Step 2 – From an Exclusive-Revelation Minor to io-Weak-OT

We now show that if a function has a protocol with an exclusive-revelation
minor, then it can be used to obtain a weak version of oblivious transfer. The
“weakness” in the OT is with respect to correctness, and not privacy. Formally:

Definition 3.7. A protocol π is a infinitely-often uniform weak oblivious trans-
fer protocol (io-weak-OT) if there exists an infinite set N ⊆ N such that Equa-
tions (2) and (3) hold for every n ∈ N and with respect to uniform distinguishers,
and there exists a polynomial p(·) such that Equation (1) holds with probability
1
2 + 1

p(n) for every n ∈ N .

We stress that the privacy requirement of the oblivious transfer (Equa-
tions (2) and (3)) is identical to uniform infinitely-often security in Definition 2.2.
However, the correctness requirement is weaker since it is only required that cor-
rectness holds with probability noticeably greater than 1/2, and not close to 1.

Lemma 3.3. Let π = 〈A,B〉 be a protocol for securely computing a functionality
f . If π has an exclusive-revelation minor, then there exists a PPT protocol π̃ that
is an infinitely-often uniform weak oblivious transfer.

Proof: Intuitively, the existence of an exclusive-revelation round in the protocol
allows us (in some weak sense) to move to the realm of asymmetric functionalities
where one party learns the output, while the other party learns nothing. It is
known that an asymmetric functionality containing an insecure minor implies
OT. We therefore use the insecure minor guaranteed by the hypothesis of the
lemma to construct (a weak form of) OT in a way similar to that used in the
world of asymmetric computation. The formal arguments follow.

Let π be a protocol computing a symmetric functionality f . Assume without
loss of generality that there exists an X-minor x, x′, y, y′ with respect to f , such
that x′, y, y′ define an exclusive revelation at round i for π (the case of an exclu-
sive revelation Y -minor is analogous). That is, we have that A(x′) distinguishes
between y and y′ at round i and for every triplet x̂, x̂′, ŷ, we have that B(ŷ)
does not distinguish between x̂ and x̂′ at round i. Let D be the corresponding
distinguisher, and assume without loss of generality that it always outputs either
0 or 1. Furthermore, since f(x, y) = f(x, y′) (by definition of a minor), by the
security of π we also have that A(x) does not distinguish between y and y′ at
round i (or any round, for that matter). It is without loss of generality (e.g., by
interchanging y and y′) to assume that for infinitely many n’s that

Pr [D (Viewπi
A (x′, y, 1n) , 1n) = 1]− Pr [D (Viewπi

A (x′, y′, 1n) , 1n) = 1] ≥ 1

p(n)
(4)

We now show how to construct an io-weak-OT protocol π̃. Before giving the
formal description of the protocol, let us give some intuition. The idea is to run
the protocol on the inputs of the above minor until round i, and then to halt
the execution. By the exclusiveness of the revelation, we are guaranteed that B



learns nothing from the computation, hence the sender S̃ will play the role of
B. If the receiver R̃ has input 0, then it will use x as its input and play the role
of A, and hence will not learn anything (recall that f(x, y) = f(x, y′) and so
the output reveals nothing about B’s input, meaning that R̃ learns nothing). In
case R̃’s input is 1 it will use x′ as its input for the computation, and will learn
the output by distinguishing as in Equation (4).

Regarding the sender’s input, one possibility is to have the sender to use y′

as its input for the computation in case b = 0 and y in case b = 1. The receiver
will then output 0 or 1, depending on what the distinguisher outputs. However,
it is possible that the distinguisher outputs 0 with probability 3/4 on input
(x′, y), and with probability 3/4 + 1/p(n) on input (x′, y′). In such a case, the
receiver will output 0 with probability 3/4 even when the output is supposed to
be 1, and so weak correctness will not hold (recall that we need correctness with
probability greater than 1/2). In order to overcome this, we have the sender use
a random input in {y, y′} and therefore transfer a random bit r to the receiver
(which in turn will try to learn r only if its input is c = 1). The sender then sends
the receiver the bit z = r ⊕ c, and the receiver outputs z if the distinguisher
output 0 and z⊕1 otherwise. This has the effect of moving the error to be around
1/2, and so we obtain correctness 1/2 + 1/p(n).

Protocol 1 (An io-weak-OT π̃ = 〈S̃, R̃〉)

Inputs: The private input of the sender S̃ is a bit b ∈ {0, 1} and the private
input of the receiver R̃ is a bit c ∈ {0, 1}. The common input is 1n, where n
is the security parameter.

The protocol:

1. The sender chooses a random bit r ∈ {0, 1}.
2. The parties start an execution of π, where the sender S̃ plays the role of

B and the receiver R̃ plays the role of A. The inputs of the parties are
set as follows:

– The input of B (played by S̃) is y′ if r = 0 and y if r = 1.
– The input of A (played by R̃) is x if c = 0 and x′ if c = 1.

The parties halt after the i-th round of π. Let viA be the partial view of
A in this partial execution of π.

3. The sender S̃ sends z = r ⊕ b to the receiver R̃.
4. If c = 0, the receiver outputs λ. Otherwise (if c = 1), the receiver executes

D on viA, sets r′ to be the output of D, and outputs z ⊕ r′. The sender
always outputs λ.

Note that the receiver is allowed to use the distinguisher D since D is a uniform
Turing machine.

Proving the weak-correctness of the protocol. Proving the correctness
when c = 0 is trivial since both parties will always output λ as required. We
consider the case that c = 1. We need to show that there exists a polynomial q (·)
such that for infinitely many n’s, it holds that Pr

[
Outputπ̃

R̃
(b, c = 1, 1n) = b

]
≥



1
2 + 1

q(n) . We will show that this holds for the polynomial q(i) = 2p(i) and for

all n’s for which Equation (4) is satisfied. We fix such an n.
Recall that R̃ outputs z ⊕ r′, where z = b ⊕ r and hence the output of R̃

equals b if and only if r′ = r, where r′ denotes the output of D on the partial
view viA. Thus, it suffices to give a lower bound on the following term (recall
that we consider the case that R̃ uses x′ since c = 1):

Pr [r′ = r] (5)

= Pr [r = 0] · Pr [r′ = 0 | r = 0] + Pr [r = 1] · Pr [r′ = 1 | r = 1]

=
1

2
· Pr [D (Viewπi

A (x′, y′, 1n) , 1n) = 0] +
1

2
· Pr [D (Viewπi

A (x′, y, 1n) , 1n) = 1]

=
1

2
· (1− Pr [D (Viewπi

A (x′, y′, 1n) , 1n) = 1]) +
1

2
· Pr [D (Viewπi

A (x′, y, 1n) , 1n) = 1]

=
1

2
+

1

2
· (Pr [D (Viewπi

A (x′, y, 1n) , 1n) = 1]− Pr [D (Viewπi
A (x′, y′, 1n) , 1n) = 1]) .

Since Equation (4) is satisfied for n, we have that

Pr [D (Viewπi
A (x′, y, 1n) , 1n) = 1]− Pr [D (Viewπi

A (x′, y′, 1n) , 1n) = 1] ≥ 1

p(n)
.

Hence, we conclude that Pr [r′ = r] ≥ 1
2 + 1

2p(n) , and so correctness holds.

Proving the privacy of the protocol. We now proceed to prove that Equa-
tions (2) and (3) in Definition 2.1 hold for all sufficiently large n’s (and thus, in
particular, for infinitely many n’s for which weak correctness holds, as required
in Definition 2.2). Due to the lack of space in this extended abstract, we sketch
this portion of the proof.

Simulating the view of the sender. We construct a PPT machine SS̃ that
simulates the sender’s view. SS̃ receives as input the sender’s input b and the
security parameter 1n, and works as follows:

1. SS̃ chooses a random bit rS̃ ∈ {0, 1}.
2. SS̃ then starts an execution of π on the following inputs until the i-th round:

– If rS̃ = 0, the input of B is y′ and if rS̃ = 1, the input of B is y.
– The input of A is x.

3. SS̃ outputs rS̃ and the partial view viB of B.

The difference between the view of the sender in a real execution and in a
simulation by SS̃ is due to the fact that SS̃ always runs A with x whereas in a real
execution A runs with x or x′ depending on the receiver’s input. Nevertheless,
these distributions are computationally indistinguishable since i is an exclusive
revelation round for A. This means that B learns nothing about A’s input up
to and including round i, and in particular the view of B when A uses x is
computationally indistinguishable from its view when A uses x′. We stress that
the fact that i is an exclusive revelation round means that no uniform distin-
guisher given B’s view can distinguish (by the notion of distinguishing between



inputs; Definition 3.4). This does not necessarily mean that no non-uniform dis-
tinguisher can distinguish; thus we only achieve privacy with respect to uniform
distinguishers.

Simulating the view of the receiver. In the case that c = 1 the simulator
receives both the sender’s and receiver’s inputs c and b and so can perfectly
simulate the view of the receiver by just running the protocol on these inputs.
We therefore describe the simulator only for the case that c = 0. The simulator
SR̃ receives as input the bit c = 0, the output OTR = λ of the functionality OT
to the receiver, and the security parameter 1n, and works as follows:

1. SR̃ executes π for i rounds, running A with input x and B with input y.
2. SR̃ chooses a random bit zS ∈ {0, 1}.
3. SR̃ outputs zS appended to the partial view viA of A.

The difference between the simulated view and a real view is that in a real
execution, the sender playing B sometimes uses y and sometimes uses y′, whereas
in the simulated execution it always uses y. In addition, the simulator sends a
random zS that is not correlated to the value r implied by the input used by B in
the computation of π. In order to see that this makes no difference, first observe
that since x, x′, y, y′ form an insecure minor, it holds that f(x, y) = f(x, y′).
Thus, when A has input x in an execution of π, it cannot distinguish the case
that B used input y or y′; otherwise, A could learn something that is not revealed
by the functionality output. Thus, the view of the receiver (who runs A) in the
protocol execution is indistinguishable from its view in the simulation. Given
the above, it follows that the distribution of a random bit zS is indistinguishable
from the distribution of z = r ⊕ b by the randomness of r. This completes the
proof.

ut

Uniform security. As explained above, the privacy of the receiver is preserved
by the exclusiveness of the revelation minor (in round i). That is, since the sender
in the OT protocol takes the role of the party that cannot distinguish the inputs
of the other party (the one active in round i). By Definition 3.4, no uniform
distinguisher D succeeds with non-negligible probability in distinguishing the
two possible inputs of the receiver. It does not, however, rule out the possibility
that a non-uniform distinguisher has noticeable success probability, yielding the
privacy of the receiver vulnerable with respect to non-uniform adversaries.

3.5 From Weak Uniform io-OT to Uniform io-OT

We conclude the proof by arguing that the existence of a uniform infinitely-often
weak-OT implies the existence of a uniform infinitely-often OT protocol. Let π be
a uniform infinitely-often weak-OT protocol. We construct a uniform infinitely-
often OT protocol π̃ by having the parties run polynomially many executions of
π on their inputs. If c = 1, the receiver outputs the majority of the outputs of
the receiver in π, and otherwise it outputs λ. It follows from the Chernoff bound



that for the infinitely-many n’s for which π has weak-correctness, π̃ is correct
with probability 1−µ(n), for some negligible function µ (·). To prove the privacy
of π̃, we use multiple executions of the simulators of the io-weak-OT. A standard
hybrid argument shows that this yields a satisfactory simulation for the io-OT
protocol. We stress that a simple hybrid argument works because the parties are
semi-honest and hence follow the prescribed protocol (specifically, they select
fresh random coins for each execution).

This completes the proof of Theorem 3.1.

4 Ideal-Box and Existential Completeness

Loosely speaking, a functionality is called complete if it can be used to securely
compute any functionality. In the standard definitions of completeness used in
previous works (cf. [10, 13, 1]), this is defined via the notion of “reduction”.
Specifically g reduces to f if it is possible to securely compute g given access
to f , and a functionality is complete if all functionalities reduce to it. In this
section we explore in greater depth how this notion of reduction is defined and
what the ramifications of this definition are.

The definition of reduction in all previous works uses the notion of an ideal
black-box for computing a functionality f = (fA, fB). The parties A and B run a
protocol for computing g while given access to an incorruptible trusted party who
computes f for them throughout the execution (the parties send inputs x and y to
the trusted party, who computes f(x, y) = (fA(x, y), fB(x, y)), and sends them
back their respective outputs). A functionality g reduces to a functionality f , if
g is securely computable given such a trusted party for computing f . This notion
is equivalent to the notion of oracle-aided protocols, defined in [5, Section 7.3.1].
Formally, using the terminology of [5], all previous definitions say that g reduces
to f if there exists an oracle-aided protocol π that information-theoretically
securely computes g when using the oracle functionality f (the only exception
is [7] that considers computational security rather than information-theoretic).
A functionality f is called complete if all g reduce to it, and it is called trivial if it
can be information-theoretically securely computed with no oracle. We call this
notion ideal-box completeness since the reduction is black-box in the functionality.

The picture of completeness and triviality for the above definition is well
known. Specifically, for the case of asymmetric functionalities where only one of
the parties receives output, a functionality is complete if it contains an insecure
minor, and trivial if not. Furthermore, for the case of symmetric functionalities
where the parties receive the same output (i.e., fA = fB), a functionality is
complete if and only if it contains an embedded OR, and is trivial if and only if
it is decomposable (see Definition 3.3).

Combining the above with Theorem 3.1, we have the following corollary:

Corollary 4.1. There exist symmetric deterministic functionalities over a do-
main of constant-size that are not neither trivial nor ideal-box-complete, such
that if there exists a constant round protocol π that securely computes such a
function, then there exists a uniform infinitely-often OT protocol.



We remark that using the results of Kilian [9], one can show that any func-
tionality can be securely computed with uniform infinitely-often security (Defini-
tion 2.2) given a uniform infinitely-often OT protocol. It therefore seems unlikely
that such an OT protocol can be constructed under weaker assumption than fully
secure OT (at least, infinitely-often secure protocols are not known to be con-
structible under weaker assumptions, and the known black-box separations for
OT [8, 4] hold also for infinitely-often OT).

Existential completeness – an alternative formulation. Corollary 4.1
suggests that there may exist functionalities that are neither trivial nor com-
plete, and yet are in some sense complete (albeit, under the caveat of uniform
infinitely-often security). This is due to the fact that the definition of ideal-box-
completeness relates to the computation of f as atomic, whereas in real life,
computation is carried out step-by-step, and in particular is not black-box in
the functionality. We therefore present an alternative notion of completeness
which is purely existential. Informally, our definition is based on saying that f
“implies” g in some sense if the feasibility of securely computing g is implied by
the feasibility of securely computing f . Formally:

Definition 4.1. Let U denote the set of all polynomial-time computable func-
tionalities. The achievable class of f ∈ U , denoted as C(f), is the set of all g ∈ U
such that if there exists a computationally secure protocol πf for computing f ,
then there exists a computationally secure protocol πg for computing g.

Let f, g ∈ U . We say that g existentially reduces to f if g ∈ C(f). Functionality
f is existentially trivial if f ∈ C(fλ) (where fλ(·, ·) = (λ, λ)), and is existentially
complete if C(f) = U .

The above definition follows the intuition that a functionality is trivial if
it can be securely computed “with no help”, and complete if all functionali-
ties can be securely computed if it can be securely computed. We stress that
if (enhanced) trapdoor functions exist, then all functionalities are trivial and
complete by this definition. Nevertheless, our definition is helpful since a proof
that a functionality f is complete (without proving the existence of enhanced
trapdoor permutations) is essentially a proof that f requires an assumption that
implies OT. We remark that this is the same as in the definition of (ideal-box)
computational completeness that appears in [7]. We also note that any func-
tionality that is ideal-box-complete, or complete by the computation definition
in [7], is also existentially complete.

We conclude by remarking that the definition of existential completeness has
the advantage that it can more accurately map the assumptions required for se-
curely computing a functionality. In particular, a function that is not complete
cannot imply OT, something which can happen under the ideal-box definition
(as hinted to by Corollary 4.1). However, it is also true that the definition of
existential completeness is less helpful due to its non-constructive nature. Specif-
ically, it does not enable us to prove or consider a hierarchy of functionalities,
and a proof that g ∈ C(f) does not necessarily tell us how to securely compute
g, even given a protocol for securely computing f .
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